論文の概要: Differentially-Private Collaborative Online Personalized Mean Estimation
- arxiv url: http://arxiv.org/abs/2411.07094v1
- Date: Mon, 11 Nov 2024 16:14:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:01.903901
- Title: Differentially-Private Collaborative Online Personalized Mean Estimation
- Title(参考訳): 協調型オンラインパーソナライズド平均推定法
- Authors: Yauhen Yakimenka, Chung-Wei Weng, Hsuan-Yin Lin, Eirik Rosnes, Jörg Kliewer,
- Abstract要約: プライバシー制約下での協調的パーソナライズされた平均推定の問題を考える。
2つのプライバシ機構と2つのデータ分散推定方式を提案する。
コラボレーションが完全に局所的なアプローチよりも早く収束することを示します。
- 参考スコア(独自算出の注目度): 22.399703712241546
- License:
- Abstract: We consider the problem of collaborative personalized mean estimation under a privacy constraint in an environment of several agents continuously receiving data according to arbitrary unknown agent-specific distributions. In particular, we provide a method based on hypothesis testing coupled with differential privacy and data variance estimation. Two privacy mechanisms and two data variance estimation schemes are proposed, and we provide a theoretical convergence analysis of the proposed algorithm for any bounded unknown distributions on the agents' data, showing that collaboration provides faster convergence than a fully local approach where agents do not share data. Moreover, we provide analytical performance curves for the case with an oracle class estimator, i.e., the class structure of the agents, where agents receiving data from distributions with the same mean are considered to be in the same class, is known. The theoretical faster-than-local convergence guarantee is backed up by extensive numerical results showing that for a considered scenario the proposed approach indeed converges much faster than a fully local approach, and performs comparably to ideal performance where all data is public. This illustrates the benefit of private collaboration in an online setting.
- Abstract(参考訳): 複数のエージェントが任意の未知のエージェント固有の分布に従ってデータを継続的に受信する環境において、プライバシー制約下での協調的パーソナライズされた平均推定の問題を考える。
特に、差分プライバシーとデータ分散推定を組み合わせた仮説テストに基づく手法を提案する。
2つのプライバシメカニズムと2つのデータ分散推定スキームを提案し、エージェントのデータ上の有界未知分布に対する提案アルゴリズムの理論的収束解析を行い、エージェントがデータを共有しない完全局所アプローチよりも高速な収束を提供することを示す。
さらに,同じ平均の分布からデータを受信するエージェントが同じクラスであると考えられるエージェントのクラス構造が知られている場合,オラクルクラス推定器を用いて解析的性能曲線を提供する。
理論的に高速な局所収束保証は、検討されたシナリオにおいて、提案手法が完全に局所的なアプローチよりもはるかに早く収束し、全てのデータが公開である理想的な性能に相容れないことを示し、広範な数値的な結果によって裏付けられている。
これは、オンライン環境でのプライベートなコラボレーションのメリットを示しています。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
分散シフトは、基礎となるデータ生成プロセスが変化したときに発生し、モデルの性能のずれにつながる。
予測間隔は、その基礎となる分布によって引き起こされる不確実性を特徴づける重要なツールとして機能する。
予測区間を集約し,最小の幅と対象領域を適切にカバーする手法を提案する。
論文 参考訳(メタデータ) (2024-05-16T17:55:42Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
本研究は,各エージェントが実数値分布からサンプルを収集し,その平均値を推定する,オーバーアーキシング問題の簡易版に焦点を当てた。
1つは信念の伝播からインスピレーションを得ており、もう1つはコンセンサスに基づくアプローチを採用している。
論文 参考訳(メタデータ) (2024-02-20T08:30:46Z) - Generalizing Differentially Private Decentralized Deep Learning with Multi-Agent Consensus [11.414398732656839]
本稿では,分散ディープラーニングに差分プライバシーを組み込んだフレームワークを提案する。
本稿では,このフレームワークから派生したアルゴリズムの収束保証を証明し,その実用性を示す。
論文 参考訳(メタデータ) (2023-06-24T07:46:00Z) - Communication-Efficient Distributed Estimation and Inference for Cox's Model [4.731404257629232]
我々は, 高次元のスパースコックス比例ハザードモデルにおいて, 推定と推定のための通信効率のよい反復分散アルゴリズムを開発した。
高次元ハザード回帰係数の線形結合に対する信頼区間を構築するために,新しい縮退法を提案する。
我々は、デコラートスコアテストに基づく任意の座標要素に対して、有効かつ強力な分散仮説テストを提供する。
論文 参考訳(メタデータ) (2023-02-23T15:50:17Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Correlated quantization for distributed mean estimation and optimization [21.17434087570296]
本稿では,誤差保証が絶対範囲ではなくデータ点のずれに依存する相関量子化プロトコルを提案する。
分散最適化アルゴリズムにおいて,提案プロトコルをサブルーチンとして適用することにより,コンバージェンス率が向上することを示す。
論文 参考訳(メタデータ) (2022-03-09T18:14:55Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。