論文の概要: Lost in Tracking Translation: A Comprehensive Analysis of Visual SLAM in Human-Centered XR and IoT Ecosystems
- arxiv url: http://arxiv.org/abs/2411.07146v1
- Date: Mon, 11 Nov 2024 17:17:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:59.039124
- Title: Lost in Tracking Translation: A Comprehensive Analysis of Visual SLAM in Human-Centered XR and IoT Ecosystems
- Title(参考訳): 追跡翻訳の損失:人間中心のXRとIoTエコシステムにおける視力SLAMの包括的分析
- Authors: Yasra Chandio, Khotso Selialia, Joseph DeGol, Luis Garcia, Fatima M. Anwar,
- Abstract要約: 各種アプリケーションおよびシナリオを対象とした最先端追跡手法の性能評価を行った。
我々は,IoT(Internet of Things, モノのインターネット)および拡張現実性(Extensioned Reality, XR)アプリケーションにおいて,複数のトラッキングアルゴリズムと代表データセットを用いて,その性能を定量的に評価する。
- 参考スコア(独自算出の注目度): 5.605260355890013
- License:
- Abstract: Advancements in tracking algorithms have empowered nascent applications across various domains, from steering autonomous vehicles to guiding robots to enhancing augmented reality experiences for users. However, these algorithms are application-specific and do not work across applications with different types of motion; even a tracking algorithm designed for a given application does not work in scenarios deviating from highly standard conditions. For example, a tracking algorithm designed for robot navigation inside a building will not work for tracking the same robot in an outdoor environment. To demonstrate this problem, we evaluate the performance of the state-of-the-art tracking methods across various applications and scenarios. To inform our analysis, we first categorize algorithmic, environmental, and locomotion-related challenges faced by tracking algorithms. We quantitatively evaluate the performance using multiple tracking algorithms and representative datasets for a wide range of Internet of Things (IoT) and Extended Reality (XR) applications, including autonomous vehicles, drones, and humans. Our analysis shows that no tracking algorithm works across different applications and scenarios within applications. Ultimately, using the insights generated from our analysis, we discuss multiple approaches to improving the tracking performance using input data characterization, leveraging intermediate information, and output evaluation.
- Abstract(参考訳): トラッキングアルゴリズムの進歩は、自動運転車の操縦から、ロボットの誘導、ユーザーのための拡張現実体験の強化など、さまざまな分野の初期段階のアプリケーションに力を与えてきた。
しかし、これらのアルゴリズムはアプリケーション固有のものであり、異なるタイプの動作を持つアプリケーション間では動作しない。
例えば、建物内のロボットナビゲーション用に設計されたトラッキングアルゴリズムは、屋外環境で同じロボットを追跡するのに役に立たない。
この問題を実証するため,様々なアプリケーションやシナリオを対象とした最先端追跡手法の性能評価を行った。
まず, 追跡アルゴリズムが直面するアルゴリズム, 環境, 移動に関わる課題を分類する。
我々は、自律走行車、ドローン、人間を含む幅広いモノのインターネット(IoT)および拡張現実(XR)アプリケーションに対して、複数のトラッキングアルゴリズムと代表データセットを使用して、パフォーマンスを定量的に評価する。
我々の分析によると、トラッキングアルゴリズムはアプリケーション内のさまざまなアプリケーションやシナリオにまたがっては機能しない。
最終的に、分析から得られた知見を用いて、入力データの特徴付け、中間情報の利用、出力評価を用いて、トラッキング性能を改善するための複数のアプローチについて議論する。
関連論文リスト
- Track Anything Rapter(TAR) [0.0]
Track Anything Rapter (TAR)は、ユーザが提供するマルチモーダルクエリに基づいて、関心のあるオブジェクトを検出し、セグメンテーションし、追跡するように設計されている。
TARは、DINO、CLIP、SAMといった最先端の事前訓練モデルを使用して、クエリされたオブジェクトの相対的なポーズを推定する。
本稿では,これらの基礎モデルとカスタム高レベル制御アルゴリズムの統合によって,高度に安定かつ高精度なトラッキングシステムを実現する方法を紹介する。
論文 参考訳(メタデータ) (2024-05-19T19:51:41Z) - Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review [4.228522109021283]
本稿では,トラヒックビデオの理解と解釈に使用できる,典型的な処理パイプラインを提案する。
この処理フレームワークは、ビデオ強調、ビデオ安定化、セマンティックおよびインシデントセグメンテーション、オブジェクト検出と分類、軌道抽出、速度推定、イベント分析、モデリング、異常検出を含む。
論文 参考訳(メタデータ) (2022-03-07T17:21:07Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Cross-Modal Analysis of Human Detection for Robotics: An Industrial Case
Study [7.844709223688293]
ロボット工学で典型的に使用されるセンサとアルゴリズムの組み合わせの系統的相互モーダル分析を行う。
2Dレンジデータ,3Dライダーデータ,RGB-Dデータに対する最先端人検知器の性能の比較を行った。
我々は、強力な画像ベースRGB-D検出器を拡張し、弱い3次元境界ボックスラベルの形でライダー検出器の相互監視を行う。
論文 参考訳(メタデータ) (2021-08-03T13:33:37Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
本稿では,無線モバイルユーザに対して,超信頼性でエネルギー効率のよいバーチャルリアリティ(VR)体験を提供するという課題について検討する。
モバイルユーザへの信頼性の高い超高精細ビデオフレーム配信を実現するために,コーディネートマルチポイント(CoMP)伝送技術とミリ波(mmWave)通信を利用する。
論文 参考訳(メタデータ) (2021-06-03T08:35:10Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Dynamic Attention guided Multi-Trajectory Analysis for Single Object
Tracking [62.13213518417047]
動的注意誘導型マルチ軌道追跡戦略を考案し,さらにダイナミクスを導入することを提案する。
特に、複数のターゲットテンプレートを含む動的外観モデルを構築し、それぞれが新しいフレーム内のターゲットを特定するのに独自の注意を払っています。
シーケンス全体にまたがった後、マルチ軌道選択ネットワークを導入し、トラッキング性能を向上させた最適な軌道を見つけます。
論文 参考訳(メタデータ) (2021-03-30T05:36:31Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - SDVTracker: Real-Time Multi-Sensor Association and Tracking for
Self-Driving Vehicles [11.317136648551537]
本稿では,関連性や状態推定に深層学習モデルを用いた,実用的で軽量なトラッキングシステムSDVTrackerを提案する。
本システムは,実世界の都市運転データセットにおいて,アクター100のシーンにおいて,CPU上で2.5ms未満で実行しながら,手作業による手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2020-03-09T23:07:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。