論文の概要: ASTD Patterns for Integrated Continuous Anomaly Detection In Data Logs
- arxiv url: http://arxiv.org/abs/2411.07272v1
- Date: Sun, 10 Nov 2024 18:17:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:14.731069
- Title: ASTD Patterns for Integrated Continuous Anomaly Detection In Data Logs
- Title(参考訳): データログにおける連続異常検出統合のためのASTDパターン
- Authors: Chaymae El Jabri, Marc Frappier, Pierre-Martin Tardif,
- Abstract要約: 本稿では,データログのアンサンブル異常検出におけるASTD言語の使用について検討する。
特に教師なし学習の文脈において,学習モデルを組み合わせるためのASTDパターンを提案する。
学習モデルのシームレスな組み合わせを可能にする新しいASTD演算子であるQuantified Flowが提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates the use of the ASTD language for ensemble anomaly detection in data logs. It uses a sliding window technique for continuous learning in data streams, coupled with updating learning models upon the completion of each window to maintain accurate detection and align with current data trends. It proposes ASTD patterns for combining learning models, especially in the context of unsupervised learning, which is commonly used for data streams. To facilitate this, a new ASTD operator is proposed, the Quantified Flow, which enables the seamless combination of learning models while ensuring that the specification remains concise. Our contribution is a specification pattern, highlighting the capacity of ASTDs to abstract and modularize anomaly detection systems. The ASTD language provides a unique approach to develop data flow anomaly detection systems, grounded in the combination of processes through the graphical representation of the language operators. This simplifies the design task for developers, who can focus primarily on defining the functional operations that constitute the system.
- Abstract(参考訳): 本稿では,データログのアンサンブル異常検出におけるASTD言語の使用について検討する。
データストリームの継続的な学習にはスライディングウィンドウ技術を使用し、各ウィンドウの完了時に学習モデルを更新することで、正確な検出と現在のデータトレンドの整合性を維持する。
学習モデルを組み合わせるためのASTDパターンを提案し、特にデータストリームによく使用される教師なし学習の文脈で提案する。
これを容易にするために、新しいASTD演算子であるQuantified Flowが提案され、仕様が簡潔であることを保証するとともに、学習モデルのシームレスな組み合わせを可能にする。
我々の貢献は仕様パターンであり、異常検出システムを抽象化しモジュール化するためのASTDの能力を強調します。
ASTD言語は、言語演算子のグラフィカル表現によるプロセスの組み合わせに基づいて、データフロー異常検出システムを開発するためのユニークなアプローチを提供する。
これは、主にシステムを構成する機能操作を定義することに集中できる開発者のためのデザインタスクを単純化する。
関連論文リスト
- DistDD: Distributed Data Distillation Aggregation through Gradient Matching [14.132062317010847]
DistDDは、クライアントのデバイスに直接データを蒸留することで、反復的なコミュニケーションの必要性を減らす、連邦学習フレームワークにおける新しいアプローチである。
本研究では,DistDDアルゴリズムの詳細な収束証明を行い,その数学的安定性と信頼性を実証する。
論文 参考訳(メタデータ) (2024-10-11T09:43:35Z) - Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner [46.866240648471894]
時空間交通データ(STTD)は、マルチスケール交通システムの複雑な動的挙動を測定する。
本稿では,STTDを暗黙的ニューラル表現としてパラメータ化することで,STTD学習問題に対処する新しいパラダイムを提案する。
実世界のシナリオにおける広範な実験を通じて,その有効性を検証し,廊下からネットワークスケールへの応用を示す。
論文 参考訳(メタデータ) (2024-06-13T02:03:22Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
時空間交通データ(STTD)は、マルチスケール交通システムの複雑な動的挙動を測定する。
本稿では,STTDを暗黙的ニューラル表現としてパラメータ化することで,STTD学習問題に対処する新しいパラダイムを提案する。
実世界のシナリオにおける広範な実験を通じて,その有効性を検証し,廊下からネットワークスケールへの応用を示す。
論文 参考訳(メタデータ) (2024-05-06T06:23:06Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
本稿では,エンドツーエンドの機械学習ワークフロー管理を支援するコンテナ化指向グラフフレームワークを提案する。
このフレームワークは、コンテナ内でMLを定義してデプロイし、メタデータを追跡し、本番環境での振る舞いを確認し、学習された知識と人為的な知識を使用してモデルを改善する。
論文 参考訳(メタデータ) (2021-11-04T17:01:12Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
分類のための連続学習のためのハイブリッド生成識別手法であるHCLを提案する。
フローは、データの配布を学習し、分類を行い、タスクの変更を特定し、忘れることを避けるために使用される。
本研究では,スプリット-MNIST,スプリット-CIFAR,SVHN-MNISTなどの連続学習ベンチマークにおいて,HCLの強い性能を示す。
論文 参考訳(メタデータ) (2021-06-24T05:19:26Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。