X-DFS: Explainable Artificial Intelligence Guided Design-for-Security Solution Space Exploration
- URL: http://arxiv.org/abs/2411.07308v1
- Date: Mon, 11 Nov 2024 19:04:29 GMT
- Title: X-DFS: Explainable Artificial Intelligence Guided Design-for-Security Solution Space Exploration
- Authors: Tanzim Mahfuz, Swarup Bhunia, Prabuddha Chakraborty,
- Abstract summary: Design-for-Security (DFS) solutions have been proposed to deal with these vulnerabilities.
DFS strategies lack robust formalism, are often not human-understandable, and require an extensive amount of human expert effort.
In this work, we propose X-DFS, an explainable Artificial Intelligence (AI) guided DFS solution-space exploration approach.
- Score: 6.060020806741279
- License:
- Abstract: Design and manufacturing of integrated circuits predominantly use a globally distributed semiconductor supply chain involving diverse entities. The modern semiconductor supply chain has been designed to boost production efficiency, but is filled with major security concerns such as malicious modifications (hardware Trojans), reverse engineering (RE), and cloning. While being deployed, digital systems are also subject to a plethora of threats such as power, timing, and electromagnetic (EM) side channel attacks. Many Design-for-Security (DFS) solutions have been proposed to deal with these vulnerabilities, and such solutions (DFS) relays on strategic modifications (e.g., logic locking, side channel resilient masking, and dummy logic insertion) of the digital designs for ensuring a higher level of security. However, most of these DFS strategies lack robust formalism, are often not human-understandable, and require an extensive amount of human expert effort during their development/use. All of these factors make it difficult to keep up with the ever growing number of microelectronic vulnerabilities. In this work, we propose X-DFS, an explainable Artificial Intelligence (AI) guided DFS solution-space exploration approach that can dramatically cut down the mitigation strategy development/use time while enriching our understanding of the vulnerability by providing human-understandable decision rationale. We implement X-DFS and comprehensively evaluate it for reverse engineering threats (SAIL, SWEEP, and OMLA) and formalize a generalized mechanism for applying X-DFS to defend against other threats such as hardware Trojans, fault attacks, and side channel attacks for seamless future extensions.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - RTL Interconnect Obfuscation By Polymorphic Switch Boxes For Secure Hardware Generation [0.0]
We present an interconnect obfuscation scheme at the Register-Transfer Level (RTL) using Switch Boxes (SBs) constructed of Polymorphic Transistors.
A polymorphic SB can be designed using the same transistor count as its Complementary-Metal-Oxide-Semiconductor based counterpart.
arXiv Detail & Related papers (2024-04-11T01:42:01Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - HOACS: Homomorphic Obfuscation Assisted Concealing of Secrets to Thwart Trojan Attacks in COTS Processor [0.6874745415692134]
We propose a software-oriented countermeasure to ensure the confidentiality of secret assets against hardware Trojans.
The proposed solution does not require any supply chain entity to be trusted and does not require analysis or modification of the IC design.
We have implemented the proposed solution to protect the secret key within the Advanced Encryption Standard (AES) program and presented a detailed security analysis.
arXiv Detail & Related papers (2024-02-15T04:33:30Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - Survey of Security Issues in Memristor-based Machine Learning Accelerators for RF Analysis [0.0]
We explore security aspects of a new computing paradigm that combines novel memristors and traditional CMOS.
Memristors have different properties than traditional CMOS which can potentially be exploited by attackers.
Mixed signal approximate computing model has different vulnerabilities than traditional digital implementations.
arXiv Detail & Related papers (2023-12-01T21:44:35Z) - DASICS: Enhancing Memory Protection with Dynamic Compartmentalization [7.802648283305372]
We present the DASICS (Dynamic in-Address-Space Isolation by Code Segments) secure processor design.
It offers dynamic and flexible security protection across multiple privilege levels, addressing data flow protection, control flow protection, and secure system calls.
We have implemented hardware FPGA prototypes and software QEMU simulator prototypes based on DASICS, along with necessary modifications to system software for adaptability.
arXiv Detail & Related papers (2023-10-10T09:05:29Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.