論文の概要: Richer Output for Richer Countries: Uncovering Geographical Disparities in Generated Stories and Travel Recommendations
- arxiv url: http://arxiv.org/abs/2411.07320v1
- Date: Mon, 11 Nov 2024 19:25:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:45.577076
- Title: Richer Output for Richer Countries: Uncovering Geographical Disparities in Generated Stories and Travel Recommendations
- Title(参考訳): 豊かな国に対するより豊かな生産: 生成した物語と旅行勧告における地理的格差を明らかにする
- Authors: Kirti Bhagat, Kinshuk Vasisht, Danish Pruthi,
- Abstract要約: 地理的知識を必要とする2つのシナリオに対して,大規模言語モデルが与える影響について検討する。
具体的には,4つの人気言語モデル,約100ドルの旅行要求,200ドルのストーリー世代を対象とした調査を行い,貧しい国に対応する旅行勧告は,より少ない場所参照で独特ではないことを示した。
- 参考スコア(独自算出の注目度): 9.505918815853644
- License:
- Abstract: While a large body of work inspects language models for biases concerning gender, race, occupation and religion, biases of geographical nature are relatively less explored. Some recent studies benchmark the degree to which large language models encode geospatial knowledge. However, the impact of the encoded geographical knowledge (or lack thereof) on real-world applications has not been documented. In this work, we examine large language models for two common scenarios that require geographical knowledge: (a) travel recommendations and (b) geo-anchored story generation. Specifically, we study four popular language models, and across about $100$K travel requests, and $200$K story generations, we observe that travel recommendations corresponding to poorer countries are less unique with fewer location references, and stories from these regions more often convey emotions of hardship and sadness compared to those from wealthier nations.
- Abstract(参考訳): 多くの研究機関がジェンダー、人種、職業、宗教に関するバイアスの言語モデルを検査する一方で、地理的自然のバイアスは比較的少ない。
最近の研究では、大規模言語モデルが地理空間知識をエンコードする程度をベンチマークしている。
しかし、符号化された地理的知識(またはその欠如)が現実世界の応用に与える影響は文書化されていない。
本研究では,地理的知識を必要とする2つの共通シナリオを対象とした大規模言語モデルについて検討する。
(a)旅行勧告及び旅行勧告
(b)ジオ・アンコール・ストーリー・ジェネレーション
具体的には,4つの人気言語モデル,約100ドルの旅行要求,約200ドルのストーリー世代について検討し,貧しい国に対応する旅行勧告は,より少ない場所参照で独特であり,これらの地域の物語は富裕国に比べて困難や悲しみの感情を伝達することが多いことを考察した。
関連論文リスト
- Evaluation of Geographical Distortions in Language Models: A Crucial Step Towards Equitable Representations [2.825324306665133]
本研究は地理的知識に関するバイアスに焦点を当てる。
地理モデルと言語モデルとの関係を,空間情報を誤表現する傾向を強調して検討する。
論文 参考訳(メタデータ) (2024-04-26T13:22:28Z) - On the Scaling Laws of Geographical Representation in Language Models [0.11510009152620666]
地理的知識は,小さなモデルであっても観測可能であること,モデルのサイズが大きくなるにつれて連続的に拡張可能であることを示す。
特に、より大規模な言語モデルでは、トレーニングデータに固有の地理的バイアスを緩和できない。
論文 参考訳(メタデータ) (2024-02-29T18:04:11Z) - Large Language Models are Geographically Biased [47.88767211956144]
我々は、地理のレンズを通して、我々の住む世界について、Large Language Models (LLM)が何を知っているかを研究する。
我々は,地理空間予測において,システム的誤りと定義する,様々な問題的地理的バイアスを示す。
論文 参考訳(メタデータ) (2024-02-05T02:32:09Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - Geographic and Geopolitical Biases of Language Models [43.62238334380897]
プレトレーニング言語モデル(PLM)における地理的バイアス(と知識)の研究手法を提案する。
以上の結果から, PLMの表現は, 国・国・国間の関連性の観点から, 物理的世界と驚くほどよく一致していることが示唆された。
最後に, 地理的近接性の概念を呈するにもかかわらず, PLMがいかに大きいかを説明する。
論文 参考訳(メタデータ) (2022-12-20T16:32:54Z) - Do Language Models Know the Way to Rome? [4.344337854565144]
我々は地理的に地平の真理が地域関係を超えて利用できるという事実を生かしている。
言語モデルは通常、限られた地理的情報をエンコードするが、より大きなモデルは最高の性能を発揮する。
論文 参考訳(メタデータ) (2021-09-16T13:28:16Z) - Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning [49.04866469947569]
地理的・地理的・地理的な共通点を理解する視覚・言語モデルの能力をテストするために,Geo-Diverse Visual Commonsense Reasoning dataset(GD-VCR)を構築した。
その結果,東アジア,南アジア,アフリカを含む非西欧地域での両モデルの性能は,西欧地域に比べて著しく低いことがわかった。
論文 参考訳(メタデータ) (2021-09-14T17:52:55Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
本稿では,外部知識ベースからのコモンセンス知識を利用して,合理的なストーリーを生成することを提案する。
我々は,真と偽のストーリーを識別するための差別的目的を組み合わせたマルチタスク学習を採用している。
我々のモデルは、特に論理学とグローバルコヒーレンスの観点から、最先端のベースラインよりも合理的なストーリーを生成することができる。
論文 参考訳(メタデータ) (2020-01-15T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。