論文の概要: Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
- arxiv url: http://arxiv.org/abs/2411.07376v1
- Date: Mon, 11 Nov 2024 21:26:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:15.770182
- Title: Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
- Title(参考訳): 超解像超音波におけるマイクロバブル定位のためのアンサンブル学習
- Authors: Sepideh K. Gharamaleki, Brandon Helfield, Hassan Rivaz,
- Abstract要約: 超解像超音波(SR-US)は、微小血管と血流を高空間分解能で捉えるための強力なイメージング技術である。
本稿では,マイクロバブル(MB)のローカライゼーションを高めるためのアンサンブル学習手法の可能性について検討する。
- 参考スコア(独自算出の注目度): 1.912429179274357
- License:
- Abstract: Super-resolution ultrasound (SR-US) is a powerful imaging technique for capturing microvasculature and blood flow at high spatial resolution. However, accurate microbubble (MB) localization remains a key challenge, as errors in localization can propagate through subsequent stages of the super-resolution process, affecting overall performance. In this paper, we explore the potential of ensemble learning techniques to enhance MB localization by increasing detection sensitivity and reducing false positives. Our study evaluates the effectiveness of ensemble methods on both in vivo and simulated outputs of a Deformable DEtection TRansformer (Deformable DETR) network. As a result of our study, we are able to demonstrate the advantages of these ensemble approaches by showing improved precision and recall in MB detection and offering insights into their application in SR-US.
- Abstract(参考訳): 超解像超音波(SR-US)は、微小血管と血流を高空間分解能で捉えるための強力なイメージング技術である。
しかし、マイクロバブル(MB)の正確なローカライゼーションは依然として重要な課題であり、ローカライゼーションにおける誤差は、超解像過程のその後の段階を通じて伝播し、全体的な性能に影響する。
本稿では,検出感度を高め,偽陽性を低減することで,MBローカライゼーションを高めるためのアンサンブル学習手法の可能性について検討する。
本研究は,Deformable Detection TRansformer (Deformable DETR) ネットワークの生体内および模擬出力に対するアンサンブル法の有効性を評価する。
本研究の結果,これらのアンサンブルアプローチの利点は,MB検出精度の向上とリコールを図り,SR-USにおけるその応用に対する洞察を提供することによって実証することができる。
関連論文リスト
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
高分解能fMRIは脳のメソスケール組織への窓を提供する。
しかし、高い空間分解能はスキャン時間を増加させ、低信号とコントラスト-ノイズ比を補う。
本研究では,fMRIのための深層学習に基づく3次元超解像法を提案する。
論文 参考訳(メタデータ) (2023-11-25T03:33:36Z) - Learning Super-Resolution Ultrasound Localization Microscopy from
Radio-Frequency Data [8.312810360920107]
DASビームフォーミングとその制限を回避しつつ、RFデータを超高分解能ネットワークに供給することを提案する。
RFトレーニングネットワークの結果から,DASビームフォーミングを除くと,ULMの分解能性能を最適化できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-07T15:47:38Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) は、高解像度画像の生成に使われている最近の効果的なアプローチの1つである。
本稿では,2次元MR画像の空間分解能を高めるために本手法を適用した。
論文 参考訳(メタデータ) (2022-07-16T23:15:10Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Simultaneous super-resolution and motion artifact removal in
diffusion-weighted MRI using unsupervised deep learning [23.33029012277273]
解像度を高め,同時にモーションアーティファクトを除去できる,完全教師なしの品質向上方式を提案する。
提案手法は, 教師なし学習を用いたmriの文脈において, 超解像と運動アーティファクトの補正を同時に行う最初の方法である。
論文 参考訳(メタデータ) (2021-05-01T13:13:53Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。