Reinforcement Learning Framework for Quantitative Trading
- URL: http://arxiv.org/abs/2411.07585v1
- Date: Tue, 12 Nov 2024 06:44:28 GMT
- Title: Reinforcement Learning Framework for Quantitative Trading
- Authors: Alhassan S. Yasin, Prabdeep S. Gill,
- Abstract summary: There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities.
This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators.
- Score: 0.0
- License:
- Abstract: The inherent volatility and dynamic fluctuations within the financial stock market underscore the necessity for investors to employ a comprehensive and reliable approach that integrates risk management strategies, market trends, and the movement trends of individual securities. By evaluating specific data, investors can make more informed decisions. However, the current body of literature lacks substantial evidence supporting the practical efficacy of reinforcement learning (RL) agents, as many models have only demonstrated success in back testing using historical data. This highlights the urgent need for a more advanced methodology capable of addressing these challenges. There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities. The disclosure of successful trading strategies is often restricted within financial markets, resulting in a scarcity of widely documented and published strategies leveraging RL. Furthermore, current research frequently overlooks the identification of financial indicators correlated with various market trends and their potential advantages. This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators. While we do not address all concerns, this paper provides deeper insights and commentary on the utilization of technical indicators and their benefits within reinforcement learning. This work establishes a foundational framework for further exploration and investigation of more complex scenarios.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
Reinforcement Learning (RL) is a branch of machine learning where agents learn by interacting with their environment.
This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for High-Frequency Trading (HFT) scenarios.
Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns.
arXiv Detail & Related papers (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Identifying Trades Using Technical Analysis and ML/DL Models [1.181206257787103]
The importance of predicting stock market prices cannot be overstated.
It enables investors to make informed investment decisions, manage risks, and ensure the stability of the financial system.
Deep learning has shown promise in accurately predicting stock prices, but there is still much research to be done.
arXiv Detail & Related papers (2023-04-12T18:46:35Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
There are several challenges in financial markets hindering practical applications of machine learning-based models.
We propose the Trader-Company method, a novel evolutionary model that mimics the roles of a financial institute and traders.
Our method predicts future stock returns by aggregating suggestions from multiple weak learners called Traders.
arXiv Detail & Related papers (2020-12-18T13:19:27Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.