Maritime Search and Rescue Missions with Aerial Images: A Survey
- URL: http://arxiv.org/abs/2411.07649v1
- Date: Tue, 12 Nov 2024 08:57:21 GMT
- Title: Maritime Search and Rescue Missions with Aerial Images: A Survey
- Authors: Juan P. Martinez-Esteso, Francisco J. Castellanos, Jorge Calvo-Zaragoza, Antonio Javier Gallego,
- Abstract summary: We analyze the methods proposed to date, including both traditional techniques and more advanced approaches based on machine learning and neural networks.
We take into account the use of synthetic data to cover a wider range of scenarios without the need to deploy a team to collect data, which is one of the major obstacles for these systems.
- Score: 12.532571610398767
- License:
- Abstract: The speed of response by search and rescue teams at sea is of vital importance, as survival may depend on it. Recent technological advancements have led to the development of more efficient systems for locating individuals involved in a maritime incident, such as the use of Unmanned Aerial Vehicles (UAVs) equipped with cameras and other integrated sensors. Over the past decade, several researchers have contributed to the development of automatic systems capable of detecting people using aerial images, particularly by leveraging the advantages of deep learning. In this article, we provide a comprehensive review of the existing literature on this topic. We analyze the methods proposed to date, including both traditional techniques and more advanced approaches based on machine learning and neural networks. Additionally, we take into account the use of synthetic data to cover a wider range of scenarios without the need to deploy a team to collect data, which is one of the major obstacles for these systems. Overall, this paper situates the reader in the field of detecting people at sea using aerial images by quickly identifying the most suitable methodology for each scenario, as well as providing an in-depth discussion and direction for future trends.
Related papers
- PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue [2.367791790578455]
This paper introduces a comprehensive framework for Post-Disaster Search and Rescue (PDSR)
Central to this concept is the rapid deployment of UAV swarms equipped with diverse sensing, communication, and intelligence capabilities.
The proposed framework aims to achieve complete coverage of damaged areas significantly faster than traditional methods.
arXiv Detail & Related papers (2024-10-30T12:46:15Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Survey of Deep Learning for Autonomous Surface Vehicles in the Marine
Environment [15.41166179659646]
Within the next several years, there will be a high level of autonomous technology that will be available for widespread use.
This paper surveys the existing work regarding the implementation of deep learning (DL) methods in ASV-related fields.
arXiv Detail & Related papers (2022-10-16T08:46:17Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - Fail-Safe Human Detection for Drones Using a Multi-Modal Curriculum
Learning Approach [1.094245191265935]
We present KUL-UAVSAFE, a first-of-its-kind dataset for the study of safety-critical people detection by drones.
We propose a CNN architecture with cross-fusion highways and introduce a curriculum learning strategy for multi-modal data.
arXiv Detail & Related papers (2021-09-28T12:34:13Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation.
This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey.
arXiv Detail & Related papers (2021-07-07T12:09:04Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing [27.15999421608932]
This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform.
The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms.
When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy.
arXiv Detail & Related papers (2020-05-07T12:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.