PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue
- URL: http://arxiv.org/abs/2410.22982v1
- Date: Wed, 30 Oct 2024 12:46:15 GMT
- Title: PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue
- Authors: Alaa Awad Abdellatif, Ali Elmancy, Amr Mohamed, Ahmed Massoud, Wadha Lebda, Khalid K. Naji,
- Abstract summary: This paper introduces a comprehensive framework for Post-Disaster Search and Rescue (PDSR)
Central to this concept is the rapid deployment of UAV swarms equipped with diverse sensing, communication, and intelligence capabilities.
The proposed framework aims to achieve complete coverage of damaged areas significantly faster than traditional methods.
- Score: 2.367791790578455
- License:
- Abstract: This paper introduces a comprehensive framework for Post-Disaster Search and Rescue (PDSR), aiming to optimize search and rescue operations leveraging Unmanned Aerial Vehicles (UAVs). The primary goal is to improve the precision and availability of sensing capabilities, particularly in various catastrophic scenarios. Central to this concept is the rapid deployment of UAV swarms equipped with diverse sensing, communication, and intelligence capabilities, functioning as an integrated system that incorporates multiple technologies and approaches for efficient detection of individuals buried beneath rubble or debris following a disaster. Within this framework, we propose architectural solution and address associated challenges to ensure optimal performance in real-world disaster scenarios. The proposed framework aims to achieve complete coverage of damaged areas significantly faster than traditional methods using a multi-tier swarm architecture. Furthermore, integrating multi-modal sensing data with machine learning for data fusion could enhance detection accuracy, ensuring precise identification of survivors.
Related papers
- Adaptive Data Transport Mechanism for UAV Surveillance Missions in Lossy Environments [2.700610024690147]
Unmanned Aerial Vehicles (UAVs) play an increasingly critical role in Intelligence, Surveillance, and Reconnaissance (ISR) missions.
This paper offers an alternative AI-driven scheduling policy that prioritizes selecting regions of the image that significantly contributes to the mission objective.
arXiv Detail & Related papers (2024-09-30T18:22:58Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.
The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.
Results indicate significant performance improvements across all settings.
arXiv Detail & Related papers (2024-07-03T07:19:41Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds
Using PointNet [0.7067443325368975]
A critical prerequisite for the integration is equipping UAVs with enhanced situational awareness to ensure safe operations.
Our study leverages radar technology for novel end-to-end semantic segmentation of aerial point clouds to simultaneously identify multiple collision hazards.
To our knowledge, this is the first approach addressing simultaneous identification of multiple collision threats in an aerial setting, achieving a robust 94% accuracy.
arXiv Detail & Related papers (2023-11-06T16:04:58Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
Planning public transport systems is a highly complex process involving many steps.
Integrating robustness from a passenger's point of view makes the task even more challenging.
In this paper, we explore a new way of such a scenario-based robustness approximation by using methods from machine learning.
arXiv Detail & Related papers (2021-06-10T05:52:56Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.