Mitigating Bias in Queer Representation within Large Language Models: A Collaborative Agent Approach
- URL: http://arxiv.org/abs/2411.07656v1
- Date: Tue, 12 Nov 2024 09:14:16 GMT
- Title: Mitigating Bias in Queer Representation within Large Language Models: A Collaborative Agent Approach
- Authors: Tianyi Huang, Arya Somasundaram,
- Abstract summary: Large Language Models (LLMs) often perpetuate biases in pronoun usage, leading to misrepresentation or exclusion of queer individuals.
This paper addresses the specific problem of biased pronoun usage in LLM outputs, particularly the inappropriate use of traditionally gendered pronouns.
We introduce a collaborative agent pipeline designed to mitigate these biases by analyzing and optimizing pronoun usage for inclusivity.
- Score: 0.0
- License:
- Abstract: Large Language Models (LLMs) often perpetuate biases in pronoun usage, leading to misrepresentation or exclusion of queer individuals. This paper addresses the specific problem of biased pronoun usage in LLM outputs, particularly the inappropriate use of traditionally gendered pronouns ("he," "she") when inclusive language is needed to accurately represent all identities. We introduce a collaborative agent pipeline designed to mitigate these biases by analyzing and optimizing pronoun usage for inclusivity. Our multi-agent framework includes specialized agents for both bias detection and correction. Experimental evaluations using the Tango dataset-a benchmark focused on gender pronoun usage-demonstrate that our approach significantly improves inclusive pronoun classification, achieving a 32.6 percentage point increase over GPT-4o in correctly disagreeing with inappropriate traditionally gendered pronouns $(\chi^2 = 38.57, p < 0.0001)$. These results accentuate the potential of agent-driven frameworks in enhancing fairness and inclusivity in AI-generated content, demonstrating their efficacy in reducing biases and promoting socially responsible AI.
Related papers
- Evaluating Gender Bias in Large Language Models [0.8636148452563583]
The study examines the extent to which Large Language Models (LLMs) exhibit gender bias in pronoun selection in occupational contexts.
The jobs considered include a range of occupations, from those with a significant male presence to those with a notable female concentration.
The results show a positive correlation between the models' pronoun choices and the gender distribution present in U.S. labor force data.
arXiv Detail & Related papers (2024-11-14T22:23:13Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Transforming Dutch: Debiasing Dutch Coreference Resolution Systems for Non-binary Pronouns [5.5514102920271196]
Gender-neutral pronouns are increasingly being introduced across Western languages.
Recent evaluations have demonstrated that English NLP systems are unable to correctly process gender-neutral pronouns.
This paper examines a Dutch coreference resolution system's performance on gender-neutral pronouns.
arXiv Detail & Related papers (2024-04-30T18:31:19Z) - Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased? [26.583741801345507]
We present a dataset of over 5 million instances to measure pronoun fidelity in English.
Our results show that pronoun fidelity is not robust, in a simple, naturalistic setting where humans achieve nearly 100% accuracy.
arXiv Detail & Related papers (2024-04-04T01:07:14Z) - Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies [75.85462924188076]
Gender-inclusive NLP research has documented the harmful limitations of gender binary-centric large language models (LLM)
We find that misgendering is significantly influenced by Byte-Pair (BPE) tokenization.
We propose two techniques: (1) pronoun tokenization parity, a method to enforce consistent tokenization across gendered pronouns, and (2) utilizing pre-existing LLM pronoun knowledge to improve neopronoun proficiency.
arXiv Detail & Related papers (2023-12-19T01:28:46Z) - A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for
Fairer Instruction-Tuned Machine Translation [35.44115368160656]
We investigate whether and to what extent machine translation models exhibit gender bias.
We find that IFT models default to male-inflected translations, even disregarding female occupational stereotypes.
We propose an easy-to-implement and effective bias mitigation solution.
arXiv Detail & Related papers (2023-10-18T17:36:55Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - MISGENDERED: Limits of Large Language Models in Understanding Pronouns [46.276320374441056]
We evaluate popular language models for their ability to correctly use English gender-neutral pronouns.
We introduce MISGENDERED, a framework for evaluating large language models' ability to correctly use preferred pronouns.
arXiv Detail & Related papers (2023-06-06T18:27:52Z) - A Survey on Zero Pronoun Translation [69.09774294082965]
Zero pronouns (ZPs) are frequently omitted in pro-drop languages, but should be recalled in non-pro-drop languages.
This survey paper highlights the major works that have been undertaken in zero pronoun translation (ZPT) after the neural revolution.
We uncover a number of insightful findings such as: 1) ZPT is in line with the development trend of large language model; 2) data limitation causes learning bias in languages and domains; 3) performance improvements are often reported on single benchmarks, but advanced methods are still far from real-world use.
arXiv Detail & Related papers (2023-05-17T13:19:01Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
Bias-measuring datasets play a critical role in detecting biased behavior of language models.
We propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation.
We show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group.
arXiv Detail & Related papers (2023-02-11T12:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.