論文の概要: EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
- arxiv url: http://arxiv.org/abs/2411.07719v1
- Date: Tue, 12 Nov 2024 11:24:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:42.796639
- Title: EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
- Title(参考訳): EMPERROR: フレキシブル・ジェネレーティブ・パーセプション・エラーモデル
- Authors: Niklas Hanselmann, Simon Doll, Marius Cordts, Hendrik P. A. Lensch, Andreas Geiger,
- Abstract要約: 本稿では, EMPERRORを提案する。
我々は、現在の検出器を以前の研究よりも忠実に模倣していることを示します。
現実的な入力を生成し、プランナーの衝突率を最大85%向上させることができる。
- 参考スコア(独自算出の注目度): 27.813716878034374
- License:
- Abstract: To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown great progress, they typically assume a setting in which the ground-truth world state is available as input. However, when deployed, planning needs to be robust to the long-tail of errors incurred by a noisy perception system, which is often neglected in evaluation. To address this, previous work has proposed drawing adversarial samples from a perception error model (PEM) mimicking the noise characteristics of a target object detector. However, these methods use simple PEMs that fail to accurately capture all failure modes of detection. In this paper, we present EMPERROR, a novel transformer-based generative PEM, apply it to stress-test an imitation learning (IL)-based planner and show that it imitates modern detectors more faithfully than previous work. Furthermore, it is able to produce realistic noisy inputs that increase the planner's collision rate by up to 85%, demonstrating its utility as a valuable tool for a more complete evaluation of self-driving planners.
- Abstract(参考訳): 現実世界の交通の複雑さに対処するためには、データから自動運転を学ぶプランナーが有望な方向だ。
近年のアプローチは大きな進歩を見せているが、それらは一般に、根底的な世界状態が入力として利用できるような環境を前提としている。
しかし、デプロイ時には、ノイズの多い認識システムによって生じる長いエラーに対して、計画が堅牢であることが必要であり、しばしば評価において無視される。
これを解決するために, 対象物体検出器の雑音特性を模倣した知覚誤差モデル(PEM)から, 対向サンプルを描画することを提案した。
しかし、これらの手法は単純なPEMを使用しており、検出の全ての障害モードを正確にキャプチャできない。
本稿では,新しい変圧器を用いた生成型PEMであるEMPERRORを,ILベースプランナのストレステストに適用し,現代の検出器を従来よりも忠実に模倣することを示す。
さらに、プランナーの衝突速度を最大85%向上させる現実的なノイズの多い入力を生成することができ、自動運転プランナーをより完全に評価するための貴重なツールとしての有用性を示すことができる。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
モデル検査を用いて、ディファレンシャルドライブホイールロボットの多段階計画を作成することにより、即時危険を回避できることを示す。
簡単な生物エージェントのエゴセントリックな反応を反映した,小型で汎用的なモデル検査アルゴリズムを用いて,リアルタイムで計画を生成する。
論文 参考訳(メタデータ) (2023-11-16T11:02:29Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data [5.859431341476405]
イベントログデータから特徴を抽出するために,畳み込みカーネル(MiniROCKETとHYDRA)に基づく予測モデルを提案する。
提案手法は,実世界の重要な収集データセットに適用される。
このモデルは、ATMのタイムリーなメンテナンスにおいてオペレータをサポートするコンテナベースの意思決定支援システムに統合された。
論文 参考訳(メタデータ) (2023-05-17T08:55:53Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Better sampling in explanation methods can prevent dieselgate-like
deception [0.0]
予測モデルの解釈性は、それらのバイアスとエラーの原因を決定するために必要である。
IME、LIME、SHAPなどの一般的なテクニックでは、インスタンス機能の摂動を使用して個々の予測を説明します。
改良されたサンプリングによりLIMEとSHAPのロバスト性が向上し,以前に未試験のメソッドIMEがすでに最もロバストであることが示されている。
論文 参考訳(メタデータ) (2021-01-26T13:41:37Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。