論文の概要: Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows
- arxiv url: http://arxiv.org/abs/2411.07763v1
- Date: Tue, 12 Nov 2024 12:52:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:27.422076
- Title: Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows
- Title(参考訳): Spider 2.0: 実世界のエンタープライズテキスト-SQLワークフローにおける言語モデルの評価
- Authors: Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida Wang, Tao Yu,
- Abstract要約: Spider 2.0は、エンタープライズレベルのデータベースのユースケースから派生した、現実のテキストからsqlの問題に対する評価フレームワークである。
Spider 2.0のデータベースは、実際のデータアプリケーションからソースされ、1,000以上の列を含み、BigQueryやSnowflakeなどのローカルまたはクラウドデータベースシステムに格納されることが多い。
Spider 2.0の問題解決には、データベースメタデータ、方言文書、さらにはプロジェクトレベルの理解と検索が頻繁に必要であることを示す。
- 参考スコア(独自算出の注目度): 64.94146689665628
- License:
- Abstract: Real-world enterprise text-to-SQL workflows often involve complex cloud or local data across various database systems, multiple SQL queries in various dialects, and diverse operations from data transformation to analytics. We introduce Spider 2.0, an evaluation framework comprising 632 real-world text-to-SQL workflow problems derived from enterprise-level database use cases. The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake. We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-level codebases. This challenge calls for models to interact with complex SQL workflow environments, process extremely long contexts, perform intricate reasoning, and generate multiple SQL queries with diverse operations, often exceeding 100 lines, which goes far beyond traditional text-to-SQL challenges. Our evaluations indicate that based on o1-preview, our code agent framework successfully solves only 17.0% of the tasks, compared with 91.2% on Spider 1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language models have demonstrated remarkable performance in code generation -- especially in prior text-to-SQL benchmarks -- they require significant improvement in order to achieve adequate performance for real-world enterprise usage. Progress on Spider 2.0 represents crucial steps towards developing intelligent, autonomous, code agents for real-world enterprise settings. Our code, baseline models, and data are available at https://spider2-sql.github.io.
- Abstract(参考訳): 実世界のエンタープライズ向けテキスト-SQLワークフローには、さまざまなデータベースシステムにまたがる複雑なクラウドやローカルデータ、さまざまな方言における複数のSQLクエリ、データ変換から分析までさまざまな操作が含まれることが多い。
企業レベルのデータベース利用事例から得られた実世界の632のテキスト-SQLワークフロー問題からなる評価フレームワークであるSpider 2.0を紹介する。
Spider 2.0のデータベースは、実際のデータアプリケーションからソースされ、1,000以上の列を含み、BigQueryやSnowflakeなどのローカルまたはクラウドデータベースシステムに格納されることが多い。
Spider 2.0の問題解決には、データベースメタデータ、方言文書、さらにはプロジェクトレベルのコードベースの理解と検索が頻繁に必要であることを示す。
この課題は、複雑なSQLワークフロー環境と対話し、非常に長いコンテキストを処理し、複雑な推論を実行し、さまざまな操作で複数のSQLクエリを生成するモデルを要求する。
評価の結果、o1-previewに基づいて、コードエージェントフレームワークは17.0%のタスクしか解決できませんが、Spider 1.0では91.2%、BIRDでは73.0%が問題です。
Spider 2.0における我々の結果は、言語モデルがコード生成(特に以前のテキストからSQLへのベンチマーク)において顕著なパフォーマンスを示した一方で、実際のエンタープライズ利用に十分なパフォーマンスを達成するためには、大幅な改善が必要であることを示している。
Spider 2.0の進歩は、現実のエンタープライズ設定のためのインテリジェントで自律的なコードエージェントを開発するための重要なステップである。
私たちのコード、ベースラインモデル、データはhttps://spider2-sql.github.io.comで公開されています。
関連論文リスト
- CodeS: Towards Building Open-source Language Models for Text-to-SQL [42.11113113574589]
1Bから15Bまでのパラメータを持つ事前学習言語モデルであるCodeSを紹介する。
CodeSは完全にオープンな言語モデルであり、パラメータサイズをはるかに小さくすることで精度が向上する。
我々は、広く使われているスパイダーベンチマークを含む、複数のデータセットの包括的な評価を行う。
論文 参考訳(メタデータ) (2024-02-26T07:00:58Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
テキストから効率のよいタスクをベースとした大規模データベースのための大規模なベンチマークであるBirdを紹介します。
データベースの値に重点を置いていると、汚いデータベースコンテンツに対する新たな課題が浮き彫りになる。
最も効果的なテキストから効率のよいモデルであるChatGPTでさえ、実行精度はわずか40.08%である。
論文 参考訳(メタデータ) (2023-05-04T19:02:29Z) - Towards Generalizable and Robust Text-to-SQL Parsing [77.18724939989647]
本稿では,タスク分解,知識獲得,知識構成からなる新しいTKKフレームワークを提案する。
このフレームワークは,Spider,SParC,Co.データセット上でのすべてのシナリオと最先端のパフォーマンスに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T09:21:27Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers [26.15889661083109]
実Webデータベースのクロスドメイン評価データセットであるKDBaggleQAを提案する。
我々は、KDBaggleQAが最先端のゼロショットに挑戦していることを示しているが、より現実的な評価設定と関連するデータベースドキュメントの創造的利用により、その正確性は13.2%以上向上している。
論文 参考訳(メタデータ) (2021-06-22T00:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。