Community Research Earth Digital Intelligence Twin (CREDIT)
- URL: http://arxiv.org/abs/2411.07814v1
- Date: Sat, 09 Nov 2024 03:08:03 GMT
- Title: Community Research Earth Digital Intelligence Twin (CREDIT)
- Authors: John Schreck, Yingkai Sha, William Chapman, Dhamma Kimpara, Judith Berner, Seth McGinnis, Arnold Kazadi, Negin Sobhani, Ben Kirk, David John Gagne II,
- Abstract summary: We introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR.
CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models.
We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively.
- Score: 0.0
- License:
- Abstract: Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Developing Gridded Emission Inventory from High-Resolution Satellite Object Detection for Improved Air Quality Forecasts [1.4238093681454425]
This study presents an innovative approach to creating a dynamic, AI based emission inventory system for use with the Weather Research and Forecasting model coupled with Chemistry (WRF Chem)
The system offers unprecedented temporal and spatial resolution in emission estimates, facilitating more accurate short term air quality forecasts and deeper insights into urban emission dynamics.
Future work will focus on expanding the system's capabilities to non vehicular sources and further improving detection accuracy in challenging environmental conditions.
arXiv Detail & Related papers (2024-10-14T01:32:45Z) - WeatherFormer: Empowering Global Numerical Weather Forecasting with Space-Time Transformer [18.1906457042669]
Numerical Weather Prediction (NWP) system is an infrastructure that exerts considerable impacts on modern society.
Traditional NWP resolves complex partial differential equations with a huge computing cluster, resulting in tons of carbon emission.
This work proposes a new transformer-based NWP framework, termed as WeatherFormer, to model complex-temporal atmosphere dynamics.
arXiv Detail & Related papers (2024-09-21T07:02:31Z) - Prithvi WxC: Foundation Model for Weather and Climate [2.9230020115516253]
Prithvi WxC is a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions.
We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation.
arXiv Detail & Related papers (2024-09-20T15:53:17Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
This work empirically investigates the optimization of complex deep learning models to analyze their functionality on an embedded device.
It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection.
arXiv Detail & Related papers (2024-06-25T17:34:52Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.