Developing Gridded Emission Inventory from High-Resolution Satellite Object Detection for Improved Air Quality Forecasts
- URL: http://arxiv.org/abs/2410.19773v1
- Date: Mon, 14 Oct 2024 01:32:45 GMT
- Title: Developing Gridded Emission Inventory from High-Resolution Satellite Object Detection for Improved Air Quality Forecasts
- Authors: Shubham Ghosal, Manmeet Singh, Sachin Ghude, Harsh Kamath, Vaisakh SB, Subodh Wasekar, Anoop Mahajan, Hassan Dashtian, Zong-Liang Yang, Michael Young, Dev Niyogi,
- Abstract summary: This study presents an innovative approach to creating a dynamic, AI based emission inventory system for use with the Weather Research and Forecasting model coupled with Chemistry (WRF Chem)
The system offers unprecedented temporal and spatial resolution in emission estimates, facilitating more accurate short term air quality forecasts and deeper insights into urban emission dynamics.
Future work will focus on expanding the system's capabilities to non vehicular sources and further improving detection accuracy in challenging environmental conditions.
- Score: 1.4238093681454425
- License:
- Abstract: This study presents an innovative approach to creating a dynamic, AI based emission inventory system for use with the Weather Research and Forecasting model coupled with Chemistry (WRF Chem), designed to simulate vehicular and other anthropogenic emissions at satellite detectable resolution. The methodology leverages state of the art deep learning based computer vision models, primarily employing YOLO (You Only Look Once) architectures (v8 to v10) and T Rex, for high precision object detection. Through extensive data collection, model training, and finetuning, the system achieved significant improvements in detection accuracy, with F1 scores increasing from an initial 0.15 at 0.131 confidence to 0.72 at 0.414 confidence. A custom pipeline converts model outputs into netCDF files storing latitude, longitude, and vehicular count data, enabling real time processing and visualization of emission patterns. The resulting system offers unprecedented temporal and spatial resolution in emission estimates, facilitating more accurate short term air quality forecasts and deeper insights into urban emission dynamics. This research not only enhances WRF Chem simulations but also bridges the gap between AI technologies and atmospheric science methodologies, potentially improving urban air quality management and environmental policymaking. Future work will focus on expanding the system's capabilities to non vehicular sources and further improving detection accuracy in challenging environmental conditions.
Related papers
- Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.