Suite-IN: Aggregating Motion Features from Apple Suite for Robust Inertial Navigation
- URL: http://arxiv.org/abs/2411.07828v1
- Date: Tue, 12 Nov 2024 14:23:52 GMT
- Title: Suite-IN: Aggregating Motion Features from Apple Suite for Robust Inertial Navigation
- Authors: Lan Sun, Songpengcheng Xia, Junyuan Deng, Jiarui Yang, Zengyuan Lai, Qi Wu, Ling Pei,
- Abstract summary: Motion data captured by sensors on different body parts contains both local and global motion information.
We propose a multi-device deep learning framework named Suite-IN, aggregating motion data from Apple Suite for inertial navigation.
- Score: 10.634236058278722
- License:
- Abstract: With the rapid development of wearable technology, devices like smartphones, smartwatches, and headphones equipped with IMUs have become essential for applications such as pedestrian positioning. However, traditional pedestrian dead reckoning (PDR) methods struggle with diverse motion patterns, while recent data-driven approaches, though improving accuracy, often lack robustness due to reliance on a single device.In our work, we attempt to enhance the positioning performance using the low-cost commodity IMUs embedded in the wearable devices. We propose a multi-device deep learning framework named Suite-IN, aggregating motion data from Apple Suite for inertial navigation. Motion data captured by sensors on different body parts contains both local and global motion information, making it essential to reduce the negative effects of localized movements and extract global motion representations from multiple devices.
Related papers
- MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations [85.85596165472663]
We build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions.
Our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding.
arXiv Detail & Related papers (2024-10-17T17:31:24Z) - DivaTrack: Diverse Bodies and Motions from Acceleration-Enhanced
Three-Point Trackers [13.258923087528354]
Full-body avatar presence is crucial for immersive social and environmental interactions in digital reality.
Current devices only provide three six degrees of freedom (DOF) poses from the headset and two controllers.
We propose a deep learning framework, DivaTrack, which outperforms existing methods when applied to diverse body sizes and activities.
arXiv Detail & Related papers (2024-02-14T14:46:03Z) - SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data [1.494051815405093]
We introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from sparse data.
Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses.
We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices.
arXiv Detail & Related papers (2023-11-03T18:48:01Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - IMUPoser: Full-Body Pose Estimation using IMUs in Phones, Watches, and
Earbuds [41.8359507387665]
We explore the feasibility of estimating body pose using IMUs already in devices that many users own.
Our pipeline receives whatever subset of IMU data is available, potentially from just a single device, and produces a best-guess pose.
arXiv Detail & Related papers (2023-04-25T02:13:24Z) - QuestSim: Human Motion Tracking from Sparse Sensors with Simulated
Avatars [80.05743236282564]
Real-time tracking of human body motion is crucial for immersive experiences in AR/VR.
We present a reinforcement learning framework that takes in sparse signals from an HMD and two controllers.
We show that a single policy can be robust to diverse locomotion styles, different body sizes, and novel environments.
arXiv Detail & Related papers (2022-09-20T00:25:54Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - MobileDets: Searching for Object Detection Architectures for Mobile
Accelerators [61.30355783955777]
Inverted bottleneck layers have been the predominant building blocks in state-of-the-art object detection models on mobile devices.
Regular convolutions are a potent component to boost the latency-accuracy trade-off for object detection on accelerators.
We obtain a family of object detection models, MobileDets, that achieve state-of-the-art results across mobile accelerators.
arXiv Detail & Related papers (2020-04-30T00:21:30Z) - MDLdroid: a ChainSGD-reduce Approach to Mobile Deep Learning for
Personal Mobile Sensing [14.574274428615666]
Running deep learning on devices offers several advantages including data privacy preservation and low-latency response for both model robustness and update.
Personal mobile sensing applications are mostly user-specific and highly affected by environment.
We present MDLdroid, a novel decentralized mobile deep learning framework to enable resource-aware on-device collaborative learning.
arXiv Detail & Related papers (2020-02-07T16:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.