Diverse capability and scaling of diffusion and auto-regressive models when learning abstract rules
- URL: http://arxiv.org/abs/2411.07873v1
- Date: Tue, 12 Nov 2024 15:29:50 GMT
- Title: Diverse capability and scaling of diffusion and auto-regressive models when learning abstract rules
- Authors: Binxu Wang, Jiaqi Shang, Haim Sompolinsky,
- Abstract summary: We investigate whether modern generative models can learn underlying rules from finite samples and perform reasoning through conditional sampling.
Inspired by Raven's Progressive Matrices task, we designed GenRAVEN dataset, where each sample consists of three rows.
We trained generative models to learn the data distribution, where samples are encoded as integer arrays to focus on rule learning.
- Score: 4.710921988115686
- License:
- Abstract: Humans excel at discovering regular structures from limited samples and applying inferred rules to novel settings. We investigate whether modern generative models can similarly learn underlying rules from finite samples and perform reasoning through conditional sampling. Inspired by Raven's Progressive Matrices task, we designed GenRAVEN dataset, where each sample consists of three rows, and one of 40 relational rules governing the object position, number, or attributes applies to all rows. We trained generative models to learn the data distribution, where samples are encoded as integer arrays to focus on rule learning. We compared two generative model families: diffusion (EDM, DiT, SiT) and autoregressive models (GPT2, Mamba). We evaluated their ability to generate structurally consistent samples and perform panel completion via unconditional and conditional sampling. We found diffusion models excel at unconditional generation, producing more novel and consistent samples from scratch and memorizing less, but performing less well in panel completion, even with advanced conditional sampling methods. Conversely, autoregressive models excel at completing missing panels in a rule-consistent manner but generate less consistent samples unconditionally. We observe diverse data scaling behaviors: for both model families, rule learning emerges at a certain dataset size - around 1000s examples per rule. With more training data, diffusion models improve both their unconditional and conditional generation capabilities. However, for autoregressive models, while panel completion improves with more training data, unconditional generation consistency declines. Our findings highlight complementary capabilities and limitations of diffusion and autoregressive models in rule learning and reasoning tasks, suggesting avenues for further research into their mechanisms and potential for human-like reasoning.
Related papers
- Table-to-Text Generation with Pretrained Diffusion Models [0.0]
Diffusion models have demonstrated significant potential in achieving state-of-the-art performance across various text generation tasks.
We investigate their application to the table-to-text problem by adapting the diffusion model to the task and conducting an in-depth analysis.
Our findings reveal that diffusion models achieve comparable results in the table-to-text domain.
arXiv Detail & Related papers (2024-09-10T15:36:53Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
We focus on Generative Masked Language Models (GMLMs)
We train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model.
We adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality.
arXiv Detail & Related papers (2024-07-22T18:00:00Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
Two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples.
We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on.
We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
arXiv Detail & Related papers (2023-09-18T18:11:31Z) - Hierarchical Few-Shot Generative Models [18.216729811514718]
We study a latent variables approach that extends the Neural Statistician to a fully hierarchical approach with an attention-based point to set-level aggregation.
Our results show that the hierarchical formulation better captures the intrinsic variability within the sets in the small data regime.
arXiv Detail & Related papers (2021-10-23T19:19:39Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Characterizing and Avoiding Problematic Global Optima of Variational
Autoencoders [28.36260646471421]
Variational Auto-encoders (VAEs) are deep generative latent variable models.
Recent work shows that traditional training methods tend to yield solutions that violate desiderata.
We show that both issues stem from the fact that the global optima of the VAE training objective often correspond to undesirable solutions.
arXiv Detail & Related papers (2020-03-17T15:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.