Simulating Quantum Many-Body States with Neural-Network Exponential Ansatz
- URL: http://arxiv.org/abs/2411.07886v1
- Date: Tue, 12 Nov 2024 15:48:23 GMT
- Title: Simulating Quantum Many-Body States with Neural-Network Exponential Ansatz
- Authors: Weillei Zeng, Jiaji Zhang, Lipeng Chen, Carlos L. Benavides-Riveros,
- Abstract summary: We develop a surrogate neural network solver that generates the exponential ansatz parameters using the Hamiltonian parameters as inputs.
We illustrate the effectiveness of this approach by training neural networks of several quantum many-body systems.
- Score: 0.0
- License:
- Abstract: Preparing quantum many-body states on classical or quantum devices is a very challenging task that requires accounting for exponentially large Hilbert spaces. Although this complexity can be managed with exponential ans\"atze (such as in the coupled-cluster method), these approaches are often tailored to specific systems, which limits their universality. Recent work has shown that the contracted Schr\"odinger equation enables the construction of universal, formally exact exponential ans\"atze for quantum many-body physics. However, while the ansatz is capable of resolving arbitrary quantum systems, it still requires a full calculation of its parameters whenever the underlying Hamiltonian changes, even slightly. Here, inspired by recent progress in operator learning, we develop a surrogate neural network solver that generates the exponential ansatz parameters using the Hamiltonian parameters as inputs, eliminating the need for repetitive computations. We illustrate the effectiveness of this approach by training neural networks of several quantum many-body systems, including the Fermi-Hubbard model.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Variance minimisation on a quantum computer for nuclear structure [0.0]
We present a variance based method of finding the excited state spectrum of a small nuclear system using a quantum computer.
Our aim is to develop quantum computing algorithms which can reproduce and predict nuclear structure.
arXiv Detail & Related papers (2022-09-16T09:38:07Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons.
We analyse a specific hardware implementation based on superconducting circuits.
We obtain state-of-the-art accuracy of 99 % on benchmark tasks.
arXiv Detail & Related papers (2022-09-07T15:24:51Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
We propose a framework that builds quantum neurons based on kernel machines.
We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space.
It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit.
arXiv Detail & Related papers (2022-02-25T04:57:41Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Fast-forwarding quantum evolution [0.2621730497733946]
We show that certain quantum systems can be simulated with gate complexity that is sublinear in the evolution time.
We provide a definition of fast-forwarding that considers the model of quantum computation, the Hamiltonians that induce the evolution, and the properties of the initial states.
arXiv Detail & Related papers (2021-05-15T22:41:28Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.