Quantum reservoir neural network implementation on coherently coupled
quantum oscillators
- URL: http://arxiv.org/abs/2209.03221v3
- Date: Tue, 2 May 2023 14:40:27 GMT
- Title: Quantum reservoir neural network implementation on coherently coupled
quantum oscillators
- Authors: Julien Dudas, Baptiste Carles, Erwan Plouet, Alice Mizrahi, Julie
Grollier, and Danijela Markovi\'c
- Abstract summary: We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons.
We analyse a specific hardware implementation based on superconducting circuits.
We obtain state-of-the-art accuracy of 99 % on benchmark tasks.
- Score: 1.7086737326992172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reservoir computing is a promising approach for quantum neural
networks, capable of solving hard learning tasks on both classical and quantum
input data. However, current approaches with qubits suffer from limited
connectivity. We propose an implementation for quantum reservoir that obtains a
large number of densely connected neurons by using parametrically coupled
quantum oscillators instead of physically coupled qubits. We analyse a specific
hardware implementation based on superconducting circuits: with just two
coupled quantum oscillators, we create a quantum reservoir comprising up to 81
neurons. We obtain state-of-the-art accuracy of 99 % on benchmark tasks that
otherwise require at least 24 classical oscillators to be solved. Our results
give the coupling and dissipation requirements in the system and show how they
affect the performance of the quantum reservoir. Beyond quantum reservoir
computing, the use of parametrically coupled bosonic modes holds promise for
realizing large quantum neural network architectures, with billions of neurons
implemented with only 10 coupled quantum oscillators.
Related papers
- Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.