Characterising memory in quantum channel discrimination via constrained separability problems
- URL: http://arxiv.org/abs/2411.08110v1
- Date: Tue, 12 Nov 2024 19:00:02 GMT
- Title: Characterising memory in quantum channel discrimination via constrained separability problems
- Authors: Ties-A. Ohst, Shijun Zhang, Hai Chau Nguyen, Martin Plávala, Marco Túlio Quintino,
- Abstract summary: Quantum memories are a crucial precondition in many protocols for processing quantum information.
We characterise the quality of channel discrimination protocols when the quantum memory is limited.
This insight allows to systematically characterise quantum and classical memories in adaptive channel discrimination protocols.
- Score: 4.007882727805384
- License:
- Abstract: Quantum memories are a crucial precondition in many protocols for processing quantum information. A fundamental problem that illustrates this statement is given by the task of channel discrimination, in which an unknown channel drawn from a known random ensemble should be determined by applying it for a single time. In this paper, we characterise the quality of channel discrimination protocols when the quantum memory, quantified by the auxiliary dimension, is limited. This is achieved by formulating the problem in terms of separable quantum states with additional affine constraints that all of their factors in each separable decomposition obey. We discuss the computation of upper and lower bounds to the solutions of such problems which allow for new insights into the role of memory in channel discrimination. In addition to the single-copy scenario, this methodological insight allows to systematically characterise quantum and classical memories in adaptive channel discrimination protocols. Especially, our methods enabled us to identify channel discrimination scenarios where classical or quantum memory is required, and to identify the hierarchical and non-hierarchical relationships within adaptive channel discrimination protocols.
Related papers
- Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Exact quantum sensing limits for bosonic dephasing channels [8.124633573706763]
Dephasing is a prominent noise mechanism that afflicts quantum information carriers.
We consider discrimination and estimation of bosonic dephasing channels.
arXiv Detail & Related papers (2024-02-08T16:35:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Quantum machine learning channel discrimination [0.0]
In the problem of quantum channel discrimination, one distinguishes between a given number of quantum channels.
This work studies applications of variational quantum circuits and machine learning techniques for discriminating such channels.
arXiv Detail & Related papers (2022-06-20T18:00:05Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Towards the ultimate limits of quantum channel discrimination [18.836836815159764]
We make a conjecture on the exponentially strong converse of quantum channel hypothesis testing under coherent strategies.
We develop a framework to show the interplay between the strategies of channel discrimination, the operational regimes, and variants of channel divergences.
arXiv Detail & Related papers (2021-10-28T01:48:13Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Idler-Free Multi-Channel Discrimination via Multipartite Probe States [0.0]
Multi-channel discrimination creates a scenario in which the discrimination of multiple quantum channels can be equated to the idea of pattern recognition.
We develop general classes of unassisted multi-channel discrimination protocols which are not assisted by idler modes.
Our findings uncover the existence of strongly quantum advantageous, idler-free protocols for the discrimination of bosonic loss and environmental noise.
arXiv Detail & Related papers (2020-10-23T12:35:15Z) - Ultimate limits for multiple quantum channel discrimination [0.966840768820136]
This paper studies the problem of hypothesis testing with quantum channels.
We establish a lower limit for the ultimate error probability affecting the discrimination of an arbitrary number of quantum channels.
We also show that this lower bound is achievable when the channels have certain symmetries.
arXiv Detail & Related papers (2020-07-29T03:08:48Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.