On some states minimizing uncertainty relations
- URL: http://arxiv.org/abs/2411.08131v1
- Date: Tue, 12 Nov 2024 19:14:05 GMT
- Title: On some states minimizing uncertainty relations
- Authors: Krzysztof Urbanowski,
- Abstract summary: We show that there can exist large set of states of the quantum system under considerations.
These states are not eigenstates of either the observable $A$ or $B$.
We also show that the so-called "sum uncertainty relations" also do not provide any information about lower bounds on the standard deviations calculated for these states.
- Score: 0.0
- License:
- Abstract: Analyzing Heisenberg-Robertson (HR) and Schr\"{o}dinger uncertainty relations we found, that there can exist large set of states of the quantum system under considerations, for which the lower bound of product of the standard deviations of a pair of non-commuting observables, $A$ and $B$, is zero. These states are not eigenstates of either the observable $A$ or $B$. We have also shown that the so-called "sum uncertainty relations" also do not provide any information about lower bounds on the standard deviations calculated for these states.
Related papers
- Uncertainty relations based on state-dependent norm of commutator [0.0]
We introduce two uncertainty relations based on the state-dependent norm of commutators, utilizing generalizations of the B"ottcher-Wenzel inequality.
The first relation is mathematically proven, while the second, tighter relation is strongly supported by numerical evidence.
arXiv Detail & Related papers (2024-06-18T05:16:45Z) - A Universal Quantum Certainty Relation for Arbitrary Number of
Observables [0.0]
We derive by lattice theory a universal quantum certainty relation for arbitrary $M$ observables in $N$-dimensional system.
We find that one cannot prepare a quantum state with PDVs of incompatible observables spreading out arbitrarily.
arXiv Detail & Related papers (2023-08-10T16:44:10Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
Observables [46.03321798937856]
We show that device independent detection cannot distinguish beyond-quantum non-local states from standard quantum states.
This paper gives a device dependent detection based on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
arXiv Detail & Related papers (2023-01-10T20:19:34Z) - Concentration bounds for quantum states and limitations on the QAOA from
polynomial approximations [17.209060627291315]
We prove concentration for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [DPMRF22]; (ii) injective matrix product states, answering an open question from [DPMRF22]; (iii) output states of dense Hamiltonian evolution, i.e. states of the form $eiota H(p) cdots eiota H(1) |psirangle for any $n$-qubit product state $|psirangle$, where each $H(
arXiv Detail & Related papers (2022-09-06T18:00:02Z) - Uncertainty Relations in Pre- and Post-Selected Systems [0.0]
We derive Robertson-Heisenberg like uncertainty relation for two incompatible observables in a pre- and post-selected (PPS) system.
Unlike the standard quantum system, the PPS system makes it feasible to prepare sharply a quantum state for non-commuting observables.
arXiv Detail & Related papers (2022-07-15T18:15:28Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Entanglement as upper bounded for the nonlocality of a general two-qubit
system [16.676050048472963]
We systematically investigate the relationship between entanglement and nonlocality of a general two-qubit system.
We find that the nonlocality of two different two-qubit states can be optimally stimulated by the same nonlocality test setting.
arXiv Detail & Related papers (2020-04-17T16:42:27Z) - Tighter uncertainty relations based on Wigner-Yanase skew information
for observables and channels [1.2375561840897742]
Wigner-Yanase skew information, as a measure of quantum uncertainties, is used to characterize intrinsic features of the state and the observable.
We investigate the sum uncertainty relations for both quantum mechanical observables and quantum channels based on skew information.
arXiv Detail & Related papers (2020-02-27T02:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.