Impactful Bit-Flip Search on Full-precision Models
- URL: http://arxiv.org/abs/2411.08133v2
- Date: Thu, 14 Nov 2024 21:48:30 GMT
- Title: Impactful Bit-Flip Search on Full-precision Models
- Authors: Nadav Benedek, Matan Levy, Mahmood Sharif,
- Abstract summary: Impactful Bit-Flip Search (IBS) is a novel method for efficiently pinpointing and flipping critical bits in full-precision networks.
We propose a Weight-Stealth technique that strategically modifies the model's parameters in a way that maintains the float values within the original distribution.
- Score: 3.4156622779256995
- License:
- Abstract: Neural networks have shown remarkable performance in various tasks, yet they remain susceptible to subtle changes in their input or model parameters. One particularly impactful vulnerability arises through the Bit-Flip Attack (BFA), where flipping a small number of critical bits in a model's parameters can severely degrade its performance. A common technique for inducing bit flips in DRAM is the Row-Hammer attack, which exploits frequent uncached memory accesses to alter data. Identifying susceptible bits can be achieved through exhaustive search or progressive layer-by-layer analysis, especially in quantized networks. In this work, we introduce Impactful Bit-Flip Search (IBS), a novel method for efficiently pinpointing and flipping critical bits in full-precision networks. Additionally, we propose a Weight-Stealth technique that strategically modifies the model's parameters in a way that maintains the float values within the original distribution, thereby bypassing simple range checks often used in tamper detection.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Evaluation of Parameter-based Attacks against Embedded Neural Networks
with Laser Injection [1.2499537119440245]
This work practically reports, for the first time, a successful variant of the Bit-Flip Attack, BFA, on a 32-bit Cortex-M microcontroller using laser fault injection.
To avoid unrealistic brute-force strategies, we show how simulations help selecting the most sensitive set of bits from the parameters taking into account the laser fault model.
arXiv Detail & Related papers (2023-04-25T14:48:58Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Leaky Nets: Recovering Embedded Neural Network Models and Inputs through
Simple Power and Timing Side-Channels -- Attacks and Defenses [4.014351341279427]
We study the side-channel vulnerabilities of embedded neural network implementations by recovering their parameters.
We demonstrate our attacks on popular micro-controller platforms over networks of different precisions.
Countermeasures against timing-based attacks are implemented and their overheads are analyzed.
arXiv Detail & Related papers (2021-03-26T21:28:13Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.