Verification of Bit-Flip Attacks against Quantized Neural Networks
- URL: http://arxiv.org/abs/2502.16286v1
- Date: Sat, 22 Feb 2025 16:35:38 GMT
- Title: Verification of Bit-Flip Attacks against Quantized Neural Networks
- Authors: Yedi Zhang, Lei Huang, Pengfei Gao, Fu Song, Jun Sun, Jin Song Dong,
- Abstract summary: We introduce BFAVerifier, the first verification framework designed to formally verify the absence of bit-flip attacks.<n> BFAVerifier comprises two integral components: an abstraction-based method and an MILP-based method.
- Score: 14.673682037450321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving landscape of neural network security, the resilience of neural networks against bit-flip attacks (i.e., an attacker maliciously flips an extremely small amount of bits within its parameter storage memory system to induce harmful behavior), has emerged as a relevant area of research. Existing studies suggest that quantization may serve as a viable defense against such attacks. Recognizing the documented susceptibility of real-valued neural networks to such attacks and the comparative robustness of quantized neural networks (QNNs), in this work, we introduce BFAVerifier, the first verification framework designed to formally verify the absence of bit-flip attacks or to identify all vulnerable parameters in a sound and rigorous manner. BFAVerifier comprises two integral components: an abstraction-based method and an MILP-based method. Specifically, we first conduct a reachability analysis with respect to symbolic parameters that represent the potential bit-flip attacks, based on a novel abstract domain with a sound guarantee. If the reachability analysis fails to prove the resilience of such attacks, then we encode this verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Therefore, BFAVerifier is sound, complete, and reasonably efficient. We conduct extensive experiments, which demonstrate its effectiveness and efficiency across various network architectures, quantization bit-widths, and adversary capabilities.
Related papers
- Impactful Bit-Flip Search on Full-precision Models [3.4156622779256995]
Impactful Bit-Flip Search (IBS) is a novel method for efficiently pinpointing and flipping critical bits in full-precision networks.<n>We propose a Weight-Stealth technique that strategically modifies the model's parameters in a way that maintains the float values within the original distribution.
arXiv Detail & Related papers (2024-11-12T19:24:42Z) - The Inherent Adversarial Robustness of Analog In-Memory Computing [2.435021773579434]
A key challenge for Deep Neural Network (DNN) algorithms is their vulnerability to adversarial attacks.
In this paper, we experimentally validate a conjecture for the first time on an AIMC chip based on Phase Change Memory (PCM) devices.
Additional robustness is also observed when performing hardware-in-theloop attacks.
arXiv Detail & Related papers (2024-11-11T14:29:59Z) - Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
We propose an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation.
We conduct a detailed analysis of uncertainty-based detection of adversarial attacks and various state-of-the-art neural networks.
Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method.
arXiv Detail & Related papers (2024-08-19T14:13:30Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Robustness against Adversarial Attacks in Neural Networks using
Incremental Dissipativity [3.8673567847548114]
Adversarial examples can easily degrade the classification performance in neural networks.
This work proposes an incremental dissipativity-based robustness certificate for neural networks.
arXiv Detail & Related papers (2021-11-25T04:42:57Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Detecting Adversarial Examples for Speech Recognition via Uncertainty
Quantification [21.582072216282725]
Machine learning systems and, specifically, automatic speech recognition (ASR) systems are vulnerable to adversarial attacks.
In this paper, we focus on hybrid ASR systems and compare four acoustic models regarding their ability to indicate uncertainty under attack.
We are able to detect adversarial examples with an area under the receiving operator curve score of more than 0.99.
arXiv Detail & Related papers (2020-05-24T19:31:02Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.