Adaptive Meta-Learning for Robust Deepfake Detection: A Multi-Agent Framework to Data Drift and Model Generalization
- URL: http://arxiv.org/abs/2411.08148v1
- Date: Tue, 12 Nov 2024 19:55:07 GMT
- Title: Adaptive Meta-Learning for Robust Deepfake Detection: A Multi-Agent Framework to Data Drift and Model Generalization
- Authors: Dinesh Srivasthav P, Badri Narayan Subudhi,
- Abstract summary: This paper proposes an adversarial meta-learning algorithm using task-specific adaptive sample synthesis and consistency regularization.
It boosts both robustness and generalization of the model.
Experimental results demonstrate the model's consistent performance across various datasets, outperforming the models in comparison.
- Score: 6.589206192038365
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pioneering advancements in artificial intelligence, especially in genAI, have enabled significant possibilities for content creation, but also led to widespread misinformation and false content. The growing sophistication and realism of deepfakes is raising concerns about privacy invasion, identity theft, and has societal, business impacts, including reputational damage and financial loss. Many deepfake detectors have been developed to tackle this problem. Nevertheless, as for every AI model, the deepfake detectors face the wrath of lack of considerable generalization to unseen scenarios and cross-domain deepfakes. Besides, adversarial robustness is another critical challenge, as detectors drastically underperform to the slightest imperceptible change. Most state-of-the-art detectors are trained on static datasets and lack the ability to adapt to emerging deepfake attack trends. These three crucial challenges though hold paramount importance for reliability in practise, particularly in the deepfake domain, are also the problems with any other AI application. This paper proposes an adversarial meta-learning algorithm using task-specific adaptive sample synthesis and consistency regularization, in a refinement phase. By focussing on the classifier's strengths and weaknesses, it boosts both robustness and generalization of the model. Additionally, the paper introduces a hierarchical multi-agent retrieval-augmented generation workflow with a sample synthesis module to dynamically adapt the model to new data trends by generating custom deepfake samples. The paper further presents a framework integrating the meta-learning algorithm with the hierarchical multi-agent workflow, offering a holistic solution for enhancing generalization, robustness, and adaptability. Experimental results demonstrate the model's consistent performance across various datasets, outperforming the models in comparison.
Related papers
- Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation [18.402668470092294]
Synthetic video generation can produce very realistic high-resolution videos that are virtually indistinguishable from real ones.<n>Several video forensic detectors have been recently proposed, but they often exhibit poor generalization.<n>We introduce a novel data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues.<n>Our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models.
arXiv Detail & Related papers (2025-06-20T07:36:59Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Robust AI-Generated Face Detection with Imbalanced Data [10.360215701635674]
Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP.<n>Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models.<n>We propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions.
arXiv Detail & Related papers (2025-05-04T17:02:10Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Diffusion Deepfake [41.59597965760673]
Recent progress in generative AI, primarily through diffusion models, presents significant challenges for real-world deepfake detection.
The increased realism in image details, diverse content, and widespread accessibility to the general public complicates the identification of these sophisticated deepfakes.
This paper introduces two extensive deepfake datasets generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2024-04-02T02:17:50Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Quality-Agnostic Deepfake Detection with Intra-model Collaborative
Learning [26.517887637150594]
Deepfake has recently raised a plethora of societal concerns over its possible security threats and dissemination of fake information.
Most SOTA approaches are limited by using a single specific model for detecting certain deepfake video quality type.
We propose a universal intra-model collaborative learning framework to enable the effective and simultaneous detection of different quality of deepfakes.
arXiv Detail & Related papers (2023-09-12T02:01:31Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.