Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation
- URL: http://arxiv.org/abs/2404.00114v1
- Date: Fri, 29 Mar 2024 19:09:08 GMT
- Title: Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation
- Authors: Liviu-Daniel Ştefan, Dan-Cristian Stanciu, Mihai Dogariu, Mihai Gabriel Constantin, Andrei Cosmin Jitaru, Bogdan Ionescu,
- Abstract summary: We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
- Score: 0.8796261172196743
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in Generative Adversarial Networks (GANs) have enabled photorealistic image generation with high quality. However, the malicious use of such generated media has raised concerns regarding visual misinformation. Although deepfake detection research has demonstrated high accuracy, it is vulnerable to advances in generation techniques and adversarial iterations on detection countermeasures. To address this, we propose a proactive and sustainable deepfake training augmentation solution that introduces artificial fingerprints into models. We achieve this by employing an ensemble learning approach that incorporates a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models. Experiments on three datasets reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation, resistance against basic data perturbations such as noise, blurring, sharpness enhancement, and affine transforms, resilience to commonly used lossy compression algorithms such as JPEG, and enhanced resistance against adversarial attacks.
Related papers
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
We present a blended-based detection approach that has robust applicability to unseen datasets.
Experiments demonstrated that this approach results in better performance in both cross-manipulation detection and cross-dataset detection on unseen data.
arXiv Detail & Related papers (2023-12-13T09:49:15Z) - Defense Against Adversarial Attacks using Convolutional Auto-Encoders [0.0]
Adversarial attacks manipulate the input data with imperceptible perturbations, causing the model to misclassify the data or produce erroneous outputs.
This work is based on enhancing the robustness of targeted models against adversarial attacks.
arXiv Detail & Related papers (2023-12-06T14:29:16Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Self-supervised GAN Detector [10.963740942220168]
generative models can be abused with malicious purposes, such as fraud, defamation, and fake news.
We propose a novel framework to distinguish the unseen generated images outside of the training settings.
Our proposed method is composed of the artificial fingerprint generator reconstructing the high-quality artificial fingerprints of GAN images.
arXiv Detail & Related papers (2021-11-12T06:19:04Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.