A Geometric Substructure for Quantum Dynamics
- URL: http://arxiv.org/abs/2411.08230v1
- Date: Tue, 12 Nov 2024 22:51:16 GMT
- Title: A Geometric Substructure for Quantum Dynamics
- Authors: Anthony John Bracken,
- Abstract summary: Theory of a closed quantum system is extended with the identification of an underlying substructure.
A possible generalization to a Riemannian substructure is speculated upon, suggesting an unexpected interaction with the background gravitational field.
- Score: 0.0
- License:
- Abstract: The description of a closed quantum system is extended with the identification of an underlying substructure in which an expanded formulation of dynamics in the Heisenberg picture is given. Between measurements a ``state point" moves in an underlying multi-dimensional complex, projective space with constant velocity determined by the quantum state vector. Following a measurement, the point changes direction and moves with new constant velocity along one of several possible new orthogonal paths, with probabilities determined by Born's Rule. A possible generalization to a Riemannian substructure is speculated upon, suggesting an unexpected interaction with the background gravitational field.
Related papers
- Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Qubit Geodesics on the Bloch Sphere from Optimal-Speed Hamiltonian
Evolutions [0.0]
We present an explicit geodesic analysis of the trajectories that emerge from the quantum evolution of a single-qubit quantum state.
In addition to viewing geodesics in ray space as paths of minimal length, we also verify the geodesicity of paths in terms of unit geometric efficiency and vanishing geometric phase.
arXiv Detail & Related papers (2022-10-17T14:44:03Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Quantum reference frames for an indefinite metric [0.0]
We propose a strategy to determine the dynamics of objects in the presence of mass gravitating in superposition, and hence an indefinite spacetime metric.
We show that, as long as the mass configurations in the different branches are related via relative-distance-preserving transformations, one can use an extension of the current framework of QRFs to change to a frame in which the mass configuration becomes definite.
We apply this procedure to find the motion of a probe particle and the behavior of clocks near the mass configuration, and thus find the time dilation caused by a gravitating object in superposition.
arXiv Detail & Related papers (2021-12-21T19:00:04Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum Measurement of Space-Time Events [0.0]
The phase space of a relativistic system can be identified with the future tube of complexified Minkowski space.
The structures are enough to allow one to put forward a quantum theory of phase-space events.
arXiv Detail & Related papers (2020-11-23T16:53:24Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.