Retrieval Augmented Time Series Forecasting
- URL: http://arxiv.org/abs/2411.08249v1
- Date: Tue, 12 Nov 2024 23:55:11 GMT
- Title: Retrieval Augmented Time Series Forecasting
- Authors: Kutay Tire, Ege Onur Taga, Muhammed Emrullah Ildiz, Samet Oymak,
- Abstract summary: We argue that the dynamic and event-driven nature of time-series data makes RAG a crucial component of time-series forecasting.
We introduce a principled RAG framework for time-series forecasting, called Retrieval Augmented Forecasting (RAF)
- Score: 19.71444850959715
- License:
- Abstract: Retrieval-augmented generation (RAG) is a central component of modern LLM systems, particularly in scenarios where up-to-date information is crucial for accurately responding to user queries or when queries exceed the scope of the training data. The advent of time-series foundation models (TSFM), such as Chronos, and the need for effective zero-shot forecasting performance across various time-series domains motivates the question: Do benefits of RAG similarly carry over to time series forecasting? In this paper, we advocate that the dynamic and event-driven nature of time-series data makes RAG a crucial component of TSFMs and introduce a principled RAG framework for time-series forecasting, called Retrieval Augmented Forecasting (RAF). Within RAF, we develop efficient strategies for retrieving related time-series examples and incorporating them into forecast. Through experiments and mechanistic studies, we demonstrate that RAF indeed improves the forecasting accuracy across diverse time series domains and the improvement is more significant for larger TSFM sizes.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAF is a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques.
TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base.
arXiv Detail & Related papers (2024-12-30T09:06:47Z) - TimeRAG: BOOSTING LLM Time Series Forecasting via Retrieval-Augmented Generation [5.607649016637917]
TimeRAG is a framework that incorporates Retrieval-Augmented Generation (RAG) into time series forecasting LLMs.
Experiments on datasets from various domains show that the integration of RAG improved the prediction accuracy of the original model by 2.97% on average.
arXiv Detail & Related papers (2024-12-21T14:27:38Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder [49.97673761305336]
We demonstrate the use of Conditional Variational (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks.
CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data.
arXiv Detail & Related papers (2024-06-19T13:13:06Z) - ROSE: Register Assisted General Time Series Forecasting with Decomposed Frequency Learning [17.734609093955374]
We propose a Register Assisted General Time Series Forecasting Model with Decomposed Frequency Learning (ROSE)
ROSE employs Decomposed Frequency Learning for the pre-training task, which decomposes coupled semantic and periodic information in time series with frequency-based masking and reconstruction to obtain unified representations across domains.
After pre-training on large-scale time series data, ROSE achieves state-of-the-art forecasting performance on 8 real-world benchmarks.
arXiv Detail & Related papers (2024-05-24T06:01:09Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
Time series forecasting has received wide interest from existing research due to its broad applications inherent challenging.
This paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation.
By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable.
arXiv Detail & Related papers (2023-07-13T13:16:01Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAF integrates a self-adaptation stage prior to forecasting based on backcasting'
Our method enables efficient adaptation of encoded representations to evolving distributions, leading to superior generalization.
On synthetic and real-world datasets in domains where time-series data are known to be notoriously non-stationary, such as healthcare and finance, we demonstrate a significant benefit of SAF.
arXiv Detail & Related papers (2022-02-04T21:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.