A decompositional framework for process theories in spacetime
- URL: http://arxiv.org/abs/2411.08266v2
- Date: Fri, 11 Apr 2025 09:48:21 GMT
- Title: A decompositional framework for process theories in spacetime
- Authors: Matthias Salzger, John H. Selby,
- Abstract summary: We extend the framework of process theories to include a background causal structure arising from a fixed spacetime.<n>We identify a canonical subset of implementations that determine both the embeddability of a process and the causal structures distinguishable at least in some process theory.<n>These zigzags could be significant for quantum causal modeling and the study of novel quantum resources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a recent surge of interest within the field of quantum foundations regarding incorporating ideas from general relativity and quantum gravity. However, many quantum information tools remain agnostic to the underlying spacetime. For instance, whenever we draw a quantum circuit the effective spacetime imposed by the connectivity of the physical qubits which will realize this circuit is not taken into account. In this work, we aim to address this limitation by extending the framework of process theories to include a background causal structure arising from a fixed spacetime. We introduce the notion of process implementations, i.e., decompositions of a process. A process is then embeddable if and only if one of its implementations can be embedded in such a way that all the component processes are localized and all wires follow timelike paths. While conceptually simple, checking for embeddability is generally computationally intractable. We therefore work towards simplifying this problem as much as possible, identifying a canonical subset of implementations that determine both the embeddability of a process and the causal structures distinguishable at least in some process theory. Notably, we discover countably infinite ``zigzag'' causal structures beyond those typically considered. While these can be ignored in classical theory, they seem to be essential in quantum theory, as the quantum CNOT gate can be implemented by all zigzag structures but not in a standard causal structure, except in the trivial undecomposed way. These zigzags could be significant for quantum causal modeling and the study of novel quantum resources.
Related papers
- Fundamental limits for realising quantum processes in spacetime [1.7802147489386633]
We derive no-go theorems for quantum experiments realisable in classical background spacetimes.
Our first theorem implies that realisations of ICO processes that do not violate relativistic causality must involve the non-localization of systems in spacetime.
The second theorem shows that for any such realisation of an ICO process, there exists a more fine-grained description in terms of a definite and acyclic causal order process.
arXiv Detail & Related papers (2024-08-23T21:41:49Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Indefinite order in the interface of quantum mechanics and gravity [0.0]
We discuss the notion of indefinite order, which first appears in an abstract generalization of Quantum Theory.
We present how scenarios involving gravity in low energies could lead to indefinite order.
arXiv Detail & Related papers (2023-10-03T01:16:27Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Circuit Complexity in Topological Quantum Field Theory [0.0]
Quantum circuit complexity has played a central role in advances in holography and many-body physics.
In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral.
We argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2-dimensional bordisms.
We use it to formulate the circuit complexity of states and operators in 2-dimensional topological quantum field theory.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Noncausal Page-Wootters circuits [0.0]
Page-Wootters formalism associates to time a Hilbert space structure similar to spatial position.
By explicitly introducing a quantum clock, it allows to describe time-evolution of systems via correlations between this clock and said systems encoded in history states.
We describe how to extract process matrices from scenarios involving such agents with quantum clocks, and analyze their properties.
arXiv Detail & Related papers (2021-05-05T20:02:09Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Genuine Multipartite Entanglement in Time [0.0]
We show that genuine multipartite entanglement in temporal processes can be an emergent phenomenon.
We construct explicit examples of W-type and GHZ-type genuinely multipartite entangled two-time processes.
We show that genuinely entangled processes across multiple times exist for any number of probing times.
arXiv Detail & Related papers (2020-11-18T15:26:42Z) - Advanced Equivalence Checking for Quantum Circuits [4.265279817927261]
We propose an advanced methodology for equivalence checking of quantum circuits.
We show that, by exploiting the reversibility of quantum circuits, complexity can be kept feasible.
In contrast to the classical realm, simulation is very powerful in verifying quantum circuits.
arXiv Detail & Related papers (2020-04-17T18:56:23Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.