Advanced Equivalence Checking for Quantum Circuits
- URL: http://arxiv.org/abs/2004.08420v2
- Date: Tue, 27 Oct 2020 09:57:40 GMT
- Title: Advanced Equivalence Checking for Quantum Circuits
- Authors: Lukas Burgholzer, Robert Wille
- Abstract summary: We propose an advanced methodology for equivalence checking of quantum circuits.
We show that, by exploiting the reversibility of quantum circuits, complexity can be kept feasible.
In contrast to the classical realm, simulation is very powerful in verifying quantum circuits.
- Score: 4.265279817927261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing will change the way we tackle certain problems. It promises
to dramatically speed-up many chemical, financial, and machine-learning
applications. However, to capitalize on those promises, complex design flows
composed of steps such as compilation, decomposition, or mapping need to be
employed before being able to execute a conceptual quantum algorithm on an
actual device. This results in descriptions at various levels of abstraction
which may significantly differ from each other. The complexity of the
underlying design problems necessitates to not only provide efficient solutions
for the single steps, but also to verify that the originally intended
functionality is preserved throughout all levels of abstraction. This motivates
methods for equivalence checking of quantum circuits. However, most existing
methods are inspired by the classical realm and have merely been extended to
support quantum circuits (i.e., circuits which do not only rely on 0's and 1's,
but also employ superposition and entanglement). In this work, we propose an
advanced methodology which takes the different paradigms of quantum circuits
not only as a burden, but as an opportunity. In fact, the proposed methodology
explicitly utilizes characteristics unique to quantum computing in order to
overcome the shortcomings of existing approaches. We show that, by exploiting
the reversibility of quantum circuits, complexity can be kept feasible in many
cases. Moreover, we show that, in contrast to the classical realm, simulation
is very powerful in verifying quantum circuits. Experimental evaluations
confirm that the resulting methodology allows one to conduct equivalence
checking dramatically faster than ever before--in many cases just a single
simulation run is sufficient. An implementation of the proposed methodology is
publicly available at https://iic.jku.at/eda/research/quantum_verification/.
Related papers
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
arXiv Detail & Related papers (2021-06-02T12:04:56Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Simpler Proofs of Quantumness [16.12500804569801]
A proof of quantumness is a method for provably demonstrating that a quantum device can perform computational tasks that a classical device cannot.
There are currently three approaches for exhibiting proofs of quantumness.
We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function.
arXiv Detail & Related papers (2020-05-11T01:31:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.