MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation
- URL: http://arxiv.org/abs/2411.08279v1
- Date: Wed, 13 Nov 2024 01:38:06 GMT
- Title: MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation
- Authors: Peng Wang, Lingzhe Zhao, Yin Zhang, Shiyu Zhao, Peidong Liu,
- Abstract summary: We propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs.
Our approach integrates an efficient motion blur-aware tracker with either neural fields or Gaussian Splatting based mapper.
We show that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction.
- Score: 15.752529196306648
- License:
- Abstract: Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
Related papers
- GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring [50.72230109855628]
We propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach.
We first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories.
By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur.
arXiv Detail & Related papers (2024-10-31T06:17:16Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - I$^2$-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM [10.464532720114052]
Casual video captures often suffer from motion blur and varying appearances, which degrade the final quality of coherent 3D visual representation.
We propose integrating the physical imaging into the SLAM system, which employs linear HDR radiance maps to collect measurements.
arXiv Detail & Related papers (2024-07-16T03:31:33Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data.
Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods.
arXiv Detail & Related papers (2024-03-20T06:19:41Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussians is a novel approach to handle severe motion-blurred images with inaccurate camera poses.
Our method achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods.
arXiv Detail & Related papers (2024-03-18T14:43:04Z) - Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting [24.160436463991495]
We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation.
Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos.
arXiv Detail & Related papers (2023-12-06T10:47:53Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - ExBluRF: Efficient Radiance Fields for Extreme Motion Blurred Images [58.24910105459957]
We present ExBluRF, a novel view synthesis method for extreme motion blurred images.
Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields.
Compared with the existing works, our approach restores much sharper 3D scenes with the order of 10 times less training time and GPU memory consumption.
arXiv Detail & Related papers (2023-09-16T11:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.