論文の概要: TowerDebias: A Novel Debiasing Method based on the Tower Property
- arxiv url: http://arxiv.org/abs/2411.08297v1
- Date: Wed, 13 Nov 2024 02:32:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:12:01.099308
- Title: TowerDebias: A Novel Debiasing Method based on the Tower Property
- Title(参考訳): TowerDebias: タワー特性に基づく新しいデバイアス法
- Authors: Norman Matloff, Aditya Mittal,
- Abstract要約: TowerDebias (tDB) は、ブラックボックスモデルによる予測における感度変数の影響を低減するために設計された新しいアプローチである。
確率論からタワー特性を用いて、tDBは後処理段階での予測公正性を改善することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Decision-making processes have increasingly come to rely on sophisticated machine learning tools, raising concerns about the fairness of their predictions with respect to any sensitive groups. The widespread use of commercial black-box machine learning models necessitates careful consideration of their legal and ethical implications on consumers. In situations where users have access to these "black-box" models, a key question emerges: how can we mitigate or eliminate the influence of sensitive attributes, such as race or gender? We propose towerDebias (tDB), a novel approach designed to reduce the influence of sensitive variables in predictions made by black-box models. Using the Tower Property from probability theory, tDB aims to improve prediction fairness during the post-processing stage in a manner amenable to the Fairness-Utility Tradeoff. This method is highly flexible, requiring no prior knowledge of the original model's internal structure, and can be extended to a range of different applications. We provide a formal improvement theorem for tDB and demonstrate its effectiveness in both regression and classification tasks, underscoring its impact on the fairness-utility tradeoff.
- Abstract(参考訳): 意思決定プロセスは、高度な機械学習ツールに依存するようになり、センシティブなグループに対する予測の公平性に対する懸念が高まっている。
商用のブラックボックス機械学習モデルの普及は、消費者に対する法的および倫理的影響を慎重に考慮する必要がある。
このような「ブラックボックス」モデルにユーザーがアクセスできる状況では、重要な疑問が浮かび上がっている。人種や性別といったセンシティブな属性の影響を緩和し、排除するにはどうすればいいのか?
ブラックボックスモデルによる予測における感度変数の影響を低減するための新しい手法である TowerDebias (tDB) を提案する。
確率論からタワー特性を用いて、tDBは、フェアネス・ユーティリティトレードオフに対応する方法で、後処理段階での予測公正性を改善することを目的としている。
この方法は柔軟性が高く、元のモデルの内部構造に関する事前の知識を必要とせず、様々なアプリケーションに拡張することができる。
我々はtDBの形式的改善定理を提案し、その妥当性を回帰と分類の両タスクで示し、公平性とユーティリティのトレードオフへの影響を裏付ける。
関連論文リスト
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
不平等とロウルシアン正義の経済理論に触発された嗜好学習モデルの公平性を評価する。
Gini Coefficient, Atkinson Index, Kuznets Ratio を用いて,これらのモデルの公平性を定量化するための指標を提案する。
論文 参考訳(メタデータ) (2024-10-24T15:25:56Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Fair Multivariate Adaptive Regression Splines for Ensuring Equity and
Transparency [1.124958340749622]
学習過程に公平度を組み込んだMARSに基づく公正度予測モデルを提案する。
MARSは、特徴選択を行い、非線形関係を扱い、解釈可能な決定ルールを生成し、変数の最適分割基準を導出する非パラメトリック回帰モデルである。
実世界のデータにfairMARSモデルを適用し、精度とエクイティの観点からその有効性を実証する。
論文 参考訳(メタデータ) (2024-02-23T19:02:24Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
ブラックボックスモデルに対するテキストプロンプト最適化と出力特徴適応のための協調ブラックボックスチューニング(CBBT)を導入する。
CBBTは11のダウンストリームベンチマークで広範囲に評価され、既存のブラックボックスVL適応法と比較して顕著に改善されている。
論文 参考訳(メタデータ) (2023-12-26T06:31:28Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Improving Fair Predictions Using Variational Inference In Causal Models [8.557308138001712]
アルゴリズム的公正の重要性は、機械学習が人々の生活に与える影響の増加とともに増大する。
フェアネス指標に関する最近の研究は、フェアネス制約における因果推論の必要性を示している。
本研究は、我々の倫理的・法的境界を尊重する機械学習技術に貢献することを目的としている。
論文 参考訳(メタデータ) (2020-08-25T08:27:11Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
本稿では,潜在性識別特徴を効果的に識別し,治療できる新しいアルゴリズムを提案する。
このアプローチは、モデルパフォーマンスを改善するために差別のない機能を集めるのに役立つ。
論文 参考訳(メタデータ) (2020-02-26T10:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。