DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2411.08299v1
- Date: Wed, 13 Nov 2024 02:41:02 GMT
- Title: DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach
- Authors: Xin Tang, Qian Chen, Wenjie Weng, Binhan Liao, Jiacheng Wang, Xianbin Cao, Xiaohuan Li,
- Abstract summary: This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM)
In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG)
Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
- Score: 16.139481340656552
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) possess high mobility and flexible deployment capabilities, prompting the development of UAVs for various application scenarios within the Internet of Things (IoT). The unique capabilities of UAVs give rise to increasingly critical and complex tasks in uncertain and potentially harsh environments. The substantial amount of data generated from these applications necessitates processing and analysis through deep neural networks (DNNs). However, UAVs encounter challenges due to their limited computing resources when managing DNN models. This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM) for assigning DNN tasks to a UAV swarm, aimed at reducing latency from task capture to result output. To address these challenges, we first consider the task size of the target area to be inspected and the shortest flying path as optimization constraints, employing a greedy algorithm to resolve the subproblem with a focus on minimizing the UAV's flying path and the overall system cost. In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG). This approach generates specific DNN task assignment actions based on agents' observations in a dynamic environment. Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network [14.857267338331708]
This paper proposes the Qedgix framework, which combines graph neural networks (GNNs) and the QMIX algorithm to achieve distributed optimization of the Age of Information (AoI) for users in unknown scenarios.
Simulation results demonstrate that the proposed algorithm significantly improves convergence speed while reducing the mean AoI values of users.
arXiv Detail & Related papers (2024-08-18T02:29:10Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
We develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs)
It is shown that task scheduling significantly reduces the average AoI.
It is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users.
arXiv Detail & Related papers (2023-05-01T11:52:15Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
We present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board.
We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions.
We introduce an online solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs.
arXiv Detail & Related papers (2021-07-09T19:47:02Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.