GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network
- URL: http://arxiv.org/abs/2409.00036v1
- Date: Sun, 18 Aug 2024 02:29:10 GMT
- Title: GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network
- Authors: Yuhao Pan, Xiucheng Wang, Zhiyao Xu, Nan Cheng, Wenchao Xu, Jun-jie Zhang,
- Abstract summary: This paper proposes the Qedgix framework, which combines graph neural networks (GNNs) and the QMIX algorithm to achieve distributed optimization of the Age of Information (AoI) for users in unknown scenarios.
Simulation results demonstrate that the proposed algorithm significantly improves convergence speed while reducing the mean AoI values of users.
- Score: 14.857267338331708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicles (UAVs), due to their low cost and high flexibility, have been widely used in various scenarios to enhance network performance. However, the optimization of UAV trajectories in unknown areas or areas without sufficient prior information, still faces challenges related to poor planning performance and low distributed execution. These challenges arise when UAVs rely solely on their own observation information and the information from other UAVs within their communicable range, without access to global information. To address these challenges, this paper proposes the Qedgix framework, which combines graph neural networks (GNNs) and the QMIX algorithm to achieve distributed optimization of the Age of Information (AoI) for users in unknown scenarios. The framework utilizes GNNs to extract information from UAVs, users within the observable range, and other UAVs within the communicable range, thereby enabling effective UAV trajectory planning. Due to the discretization and temporal features of AoI indicators, the Qedgix framework employs QMIX to optimize distributed partially observable Markov decision processes (Dec-POMDP) based on centralized training and distributed execution (CTDE) with respect to mean AoI values of users. By modeling the UAV network optimization problem in terms of AoI and applying the Kolmogorov-Arnold representation theorem, the Qedgix framework achieves efficient neural network training through parameter sharing based on permutation invariance. Simulation results demonstrate that the proposed algorithm significantly improves convergence speed while reducing the mean AoI values of users. The code is available at https://github.com/UNIC-Lab/Qedgix.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
We develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs)
It is shown that task scheduling significantly reduces the average AoI.
It is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users.
arXiv Detail & Related papers (2023-05-01T11:52:15Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
We present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board.
We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions.
We introduce an online solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs.
arXiv Detail & Related papers (2021-07-09T19:47:02Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - Offloading Optimization in Edge Computing for Deep Learning Enabled
Target Tracking by Internet-of-UAVs [22.143742665920573]
Unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such as target tracking.
A pre-trained convolutional neural network (CNN) is deployed at the UAV to identify a target from the captured video frames.
This kind of visual target tracking demands a lot of computational resources due to the desired high inference accuracy and stringent delay requirement.
This motivates us to consider offloading this type of deep learning (DL) tasks to a mobile edge computing (MEC) server.
arXiv Detail & Related papers (2020-08-18T16:00:36Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.