DyConfidMatch: Dynamic Thresholding and Re-sampling for 3D Semi-supervised Learning
- URL: http://arxiv.org/abs/2411.08340v1
- Date: Wed, 13 Nov 2024 05:09:28 GMT
- Title: DyConfidMatch: Dynamic Thresholding and Re-sampling for 3D Semi-supervised Learning
- Authors: Zhimin Chen, Bing Li,
- Abstract summary: Semi-supervised learning (SSL) leverages limited labeled and abundant unlabeled data but often faces challenges with data imbalance.
This study investigates class-level confidence as an indicator of learning status in 3D SSL, proposing a novel method that utilizes dynamic thresholding.
A re-sampling strategy is also introduced to mitigate bias towards well-represented classes, ensuring equitable class representation.
- Score: 4.259908158892314
- License:
- Abstract: Semi-supervised learning (SSL) leverages limited labeled and abundant unlabeled data but often faces challenges with data imbalance, especially in 3D contexts. This study investigates class-level confidence as an indicator of learning status in 3D SSL, proposing a novel method that utilizes dynamic thresholding to better use unlabeled data, particularly from underrepresented classes. A re-sampling strategy is also introduced to mitigate bias towards well-represented classes, ensuring equitable class representation. Through extensive experiments in 3D SSL, our method surpasses state-of-the-art counterparts in classification and detection tasks, highlighting its effectiveness in tackling data imbalance. This approach presents a significant advancement in SSL for 3D datasets, providing a robust solution for data imbalance issues.
Related papers
- Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - How To Overcome Confirmation Bias in Semi-Supervised Image
Classification By Active Learning [2.1805442504863506]
We present three data challenges common in real-world applications: between-class imbalance, within-class imbalance, and between-class similarity.
We find that random sampling does not mitigate confirmation bias and, in some cases, leads to worse performance than supervised learning.
Our results provide insights into the potential of combining active and semi-supervised learning in the presence of common real-world challenges.
arXiv Detail & Related papers (2023-08-16T08:52:49Z) - Hierarchical Supervision and Shuffle Data Augmentation for 3D
Semi-Supervised Object Detection [90.32180043449263]
State-of-the-art 3D object detectors are usually trained on large-scale datasets with high-quality 3D annotations.
A natural remedy is to adopt semi-supervised learning (SSL) by leveraging a limited amount of labeled samples and abundant unlabeled samples.
This paper introduces a novel approach of Hierarchical Supervision and Shuffle Data Augmentation (HSSDA), which is a simple yet effective teacher-student framework.
arXiv Detail & Related papers (2023-04-04T02:09:32Z) - Active Semi-Supervised Learning by Exploring Per-Sample Uncertainty and
Consistency [30.94964727745347]
We propose a method called Active Semi-supervised Learning (ASSL) to improve accuracy of models at a lower cost.
ASSL involves more dynamic model updates than Active Learning (AL) due to the use of unlabeled data.
ASSL achieved about 5.3 times higher computational efficiency than Semi-supervised Learning (SSL) while achieving the same performance.
arXiv Detail & Related papers (2023-03-15T22:58:23Z) - Class-Level Confidence Based 3D Semi-Supervised Learning [18.95161296147023]
We show that unlabeled data class-level confidence can represent the learning status in the 3D imbalanced dataset.
Our method significantly outperforms state-of-the-art counterparts for both 3D SSL classification and detection tasks.
arXiv Detail & Related papers (2022-10-18T20:13:28Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
We propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification.
Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.
arXiv Detail & Related papers (2022-07-22T00:15:02Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
Semi-supervised learning (SSL) aims to improve learning performance by leveraging unlabeled data when labels are insufficient.
SSL with deep models has proven to be successful on standard benchmark tasks.
However, they are still vulnerable to various robustness threats in real-world applications.
arXiv Detail & Related papers (2022-02-12T04:16:41Z) - Adversarial Self-Supervised Learning for Semi-Supervised 3D Action
Recognition [123.62183172631443]
We present Adversarial Self-Supervised Learning (ASSL), a novel framework that tightly couples SSL and the semi-supervised scheme.
Specifically, we design an effective SSL scheme to improve the discrimination capability of learned representations for 3D action recognition.
arXiv Detail & Related papers (2020-07-12T08:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.