A Fuzzy Reinforcement LSTM-based Long-term Prediction Model for Fault Conditions in Nuclear Power Plants
- URL: http://arxiv.org/abs/2411.08370v1
- Date: Wed, 13 Nov 2024 06:40:17 GMT
- Title: A Fuzzy Reinforcement LSTM-based Long-term Prediction Model for Fault Conditions in Nuclear Power Plants
- Authors: Siwei Li, Jiayan Fang, Yichun Wua, Wei Wang, Chengxin Li, Jiangwen Chen,
- Abstract summary: Early fault detection and timely maintenance scheduling can significantly mitigate operational risks in NPPs.
It is necessary to develop an efficient Prognostics and Health Management (PHM) multi-step prediction model.
We propose a novel predictive model that integrates reinforcement learning with Long Short-Term Memory (LSTM) neural networks and the Expert Fuzzy Evaluation Method.
- Score: 3.386466888902435
- License:
- Abstract: Early fault detection and timely maintenance scheduling can significantly mitigate operational risks in NPPs and enhance the reliability of operator decision-making. Therefore, it is necessary to develop an efficient Prognostics and Health Management (PHM) multi-step prediction model for predicting of system health status and prompt execution of maintenance operations. In this study, we propose a novel predictive model that integrates reinforcement learning with Long Short-Term Memory (LSTM) neural networks and the Expert Fuzzy Evaluation Method. The model is validated using parameter data for 20 different breach sizes in the Main Steam Line Break (MSLB) accident condition of the CPR1000 pressurized water reactor simulation model and it demonstrates a remarkable capability in accurately forecasting NPP parameter changes up to 128 steps ahead (with a time interval of 10 seconds per step, i.e., 1280 seconds), thereby satisfying the temporal advance requirement for fault prognostics in NPPs. Furthermore, this method provides an effective reference solution for PHM applications such as anomaly detection and remaining useful life prediction.
Related papers
- Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - A Long-term Dependent and Trustworthy Approach to Reactor Accident
Prognosis based on Temporal Fusion Transformer [0.779964823075849]
We propose a method for accident prognosis based on the Temporal Fusion Transformer (TFT) model with multi-headed self-attention and gating mechanisms.
The method is applied to the prognosis after loss of coolant accidents (LOCAs) in HPR1000 reactor.
arXiv Detail & Related papers (2022-10-28T13:08:48Z) - Post-hoc Interpretability based Parameter Selection for Data Oriented
Nuclear Reactor Accident Diagnosis System [0.0]
This study proposes a method of choosing thermal hydraulics parameters of a nuclear power plant, using the theory of post-hoc interpretability theory in deep learning.
The TRES-CNN based diagnostic model successfully predicts the position and size of breaks in LOCA via selected 15 parameters of HPR1000, with 25% of time consumption while training the model compared the process using total 38 parameters.
arXiv Detail & Related papers (2022-08-03T01:53:11Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) is an unsupervised learning algorithm inspired by the features of the neocortex.
This paper presents the first systematic study that assesses HTM in the context of failure prediction.
arXiv Detail & Related papers (2021-10-06T07:09:45Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
arXiv Detail & Related papers (2021-07-26T14:55:02Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Data-driven method for real-time prediction and uncertainty
quantification of fatigue failure under stochastic loading using artificial
neural networks and Gaussian process regression [0.0]
Methods for early failure prediction are essential for engineering, military, and civil applications.
Uncertainty (UQ) is of major importance for real-time decision-making purposes.
arXiv Detail & Related papers (2021-03-11T13:57:08Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.