Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models
- URL: http://arxiv.org/abs/2107.12250v1
- Date: Mon, 26 Jul 2021 14:55:02 GMT
- Title: Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models
- Authors: Zhiliang Wu, Yinchong Yang, Peter A. Fasching, Volker Tresp
- Abstract summary: We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
- Score: 11.171712535005357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural network based solutions are increasingly being used in the
analysis of longitudinal Electronic Health Record data. However, most works
focus on prediction accuracy and neglect prediction uncertainty. We propose
Deep Kernel Accelerated Failure Time models for the time-to-event prediction
task, enabling uncertainty-awareness of the prediction by a pipeline of a
recurrent neural network and a sparse Gaussian Process. Furthermore, a deep
metric learning based pre-training step is adapted to enhance the proposed
model. Our model shows better point estimate performance than recurrent neural
network based baselines in experiments on two real-world datasets. More
importantly, the predictive variance from our model can be used to quantify the
uncertainty estimates of the time-to-event prediction: Our model delivers
better performance when it is more confident in its prediction. Compared to
related methods, such as Monte Carlo Dropout, our model offers better
uncertainty estimates by leveraging an analytical solution and is more
computationally efficient.
Related papers
- Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction.
In most cases, the proposed model shows better performance compared to common architectures.
Our model can also be used to detect challenging and controversial test samples.
arXiv Detail & Related papers (2021-06-01T17:09:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
We propose a method to compute prediction intervals for model performance.
We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines.
arXiv Detail & Related papers (2020-12-15T21:32:03Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.