Multiscale Graph Construction Using Non-local Cluster Features
- URL: http://arxiv.org/abs/2411.08371v1
- Date: Wed, 13 Nov 2024 06:42:03 GMT
- Title: Multiscale Graph Construction Using Non-local Cluster Features
- Authors: Reina Kaneko, Hayate Kojima, Kenta Yanagiya, Junya Hara, Hiroshi Higashi, Yuichi Tanaka,
- Abstract summary: We consider graph and node-wise features simultaneously for multiscale clustering of a graph.
In experiments on multiscale image and point cloud segmentation, we demonstrate the effectiveness of the proposed method.
- Score: 10.922757310575307
- License:
- Abstract: This paper presents a multiscale graph construction method using both graph and signal features. Multiscale graph is a hierarchical representation of the graph, where a node at each level indicates a cluster in a finer resolution. To obtain the hierarchical clusters, existing methods often use graph clustering; however, they may ignore signal variations. As a result, these methods could fail to detect the clusters having similar features on nodes. In this paper, we consider graph and node-wise features simultaneously for multiscale clustering of a graph. With given clusters of the graph, the clusters are merged hierarchically in three steps: 1) Feature vectors in the clusters are extracted. 2) Similarities among cluster features are calculated using optimal transport. 3) A variable $k$-nearest neighbor graph (V$k$NNG) is constructed and graph spectral clustering is applied to the V$k$NNG to obtain clusters at a coarser scale. Additionally, the multiscale graph in this paper has \textit{non-local} characteristics: Nodes with similar features are merged even if they are spatially separated. In experiments on multiscale image and point cloud segmentation, we demonstrate the effectiveness of the proposed method.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification.
By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones.
arXiv Detail & Related papers (2023-08-12T02:47:57Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - ClusterFuG: Clustering Fully connected Graphs by Multicut [20.254912065749956]
In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors.
We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality.
arXiv Detail & Related papers (2023-01-28T11:10:50Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.