論文の概要: BAMAX: Backtrack Assisted Multi-Agent Exploration using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.08400v1
- Date: Wed, 13 Nov 2024 07:38:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:42.215581
- Title: BAMAX: Backtrack Assisted Multi-Agent Exploration using Reinforcement Learning
- Title(参考訳): BAMAX:強化学習を用いたバックトラック支援多エージェント探索
- Authors: Geetansh Kalra, Amit Patel, Atul Chaudhari, Divye Singh,
- Abstract要約: 強化学習(BAMAX)を用いたバックトラック支援多エージェント探索について紹介する。
BAMAXは仮想環境全体を探索しようとするマルチエージェントシステムにおける協調的な探索手法である。
その結果、BAMAXは、より高速なカバレッジと、これらの環境におけるバックトラックの少ないという点で、他の方法よりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous robots collaboratively exploring an unknown environment is still an open problem. The problem has its roots in coordination among non-stationary agents, each with only a partial view of information. The problem is compounded when the multiple robots must completely explore the environment. In this paper, we introduce Backtrack Assisted Multi-Agent Exploration using Reinforcement Learning (BAMAX), a method for collaborative exploration in multi-agent systems which attempts to explore an entire virtual environment. As in the name, BAMAX leverages backtrack assistance to enhance the performance of agents in exploration tasks. To evaluate BAMAX against traditional approaches, we present the results of experiments conducted across multiple hexagonal shaped grids sizes, ranging from 10x10 to 60x60. The results demonstrate that BAMAX outperforms other methods in terms of faster coverage and less backtracking across these environments.
- Abstract(参考訳): 未知の環境を共同で探索する自律ロボットは、まだ未解決の問題だ。
この問題は、情報の部分的なビューしか持たない非定常エージェント間の協調に根ざしている。
この問題は、複数のロボットが完全に環境を探索しなければならない場合に複雑になる。
本稿では,仮想環境全体を探索するマルチエージェントシステムにおける協調探索手法であるBAMAX(Backtrack Assisted Multi-Agent Exploration using Reinforcement Learning)を提案する。
名前のとおり、BAMAXは探索作業におけるエージェントのパフォーマンスを高めるためにバックトラックアシストを利用する。
従来のアプローチに対してBAMAXを評価するために,10×10から60×60の範囲の複数の六角形格子を用いて実験を行った。
その結果、BAMAXは、より高速なカバレッジと、これらの環境におけるバックトラックの少ないという点で、他の手法よりも優れていることが示された。
関連論文リスト
- Curiosity & Entropy Driven Unsupervised RL in Multiple Environments [0.0]
オリジナル作品に5つの新しい修正を加えて実験する。
高次元環境では、好奇心による探索は、エージェントに多様な経験を求め、未知のものを探索するように促すことによって学習を促進する。
しかし、探索可能性に制約があり、エージェントに真に知られていないような、低次元でシンプルな環境では、その利点は限られている。
論文 参考訳(メタデータ) (2024-01-08T19:25:40Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
本研究では,コミュニケーションが限られ,位置情報がない未知の環境での効率的なマルチロボット探索のための新しいハイブリッドアルゴリズムを提案する。
連続した目標情報なしでシナリオに合うように、ローカルなベストとグローバルなベストポジションを再定義する。
提示された研究は、限られた情報と通信能力を持つシナリオにおけるマルチロボット探索の強化を約束している。
論文 参考訳(メタデータ) (2023-11-28T17:05:25Z) - A further exploration of deep Multi-Agent Reinforcement Learning with
Hybrid Action Space [0.0]
深層多エージェントハイブリッドアクター批判(MAHSAC)と多エージェントハイブリッド深層決定主義政策勾配(MAHDDPG)の2つのアルゴリズムを提案する。
私たちの経験は、簡単なマルチエージェント粒子の世界であるマルチエージェント粒子環境と、いくつかの基本的なシミュレートされた物理で動いています。
論文 参考訳(メタデータ) (2022-08-30T07:40:15Z) - Discovering and Achieving Goals via World Models [61.95437238374288]
この問題に対する統一的なソリューションであるLatent Explorer Achiever (LEXA)を紹介する。
LEXAはイメージ入力から世界モデルを学び、それをエクスプローラーのトレーニングや、想像上のロールアウトから達成ポリシーに利用する。
教師なしフェーズの後、LEXAは追加の学習なしにゴール画像ゼロショットとして指定されたタスクを解決する。
論文 参考訳(メタデータ) (2021-10-18T17:59:58Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
深層強化学習のための協調型マルチエージェント探索(CMAE)を提案する。
ゴールは正規化エントロピーに基づく手法により、複数の射影状態空間から選択される。
CMAEが様々なタスクのベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2021-07-23T20:06:32Z) - BeBold: Exploration Beyond the Boundary of Explored Regions [66.88415950549556]
本稿では,本質的報酬(IR)の簡便かつ効果的な基準として,逆訪問回数の規制的差異を提案する。
この基準は、エージェントが探索された地域の境界を越えて探索し、短視力や分離などのカウントベースの方法の一般的な問題を緩和するのに役立ちます。
その結果得られたBeBoldは、MiniGridの12の最も難しい手続き的タスクを、カリキュラムの学習なしにわずか120万の環境ステップで解決する。
論文 参考訳(メタデータ) (2020-12-15T21:26:54Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
マルチエージェントインタラクションは、現実の世界における自律運転の基本的な側面である。
研究と開発が10年以上続いたにもかかわらず、様々なシナリオで多様な道路ユーザーと対話する方法の問題は未解決のままである。
SMARTSと呼ばれる,多種多様な運転インタラクションを生成する専用シミュレーションプラットフォームを開発した。
論文 参考訳(メタデータ) (2020-10-19T18:26:10Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
そこで我々は,多岐にわたる探索政策を学習し,ハード・サーベイ・ゲームを解決するための強化学習エージェントを提案する。
エージェントの最近の経験に基づいて,k-アネレスト隣人を用いたエピソード記憶に基づく本質的な報酬を構築し,探索政策を訓練する。
自己教師付き逆動力学モデルを用いて、近くのルックアップの埋め込みを訓練し、エージェントが制御できる新しい信号をバイアスする。
論文 参考訳(メタデータ) (2020-02-14T13:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。