論文の概要: Symbolic-AI-Fusion Deep Learning (SAIF-DL): Encoding Knowledge into Training with Answer Set Programming Loss Penalties by a Novel Loss Function Approach
- arxiv url: http://arxiv.org/abs/2411.08463v1
- Date: Wed, 13 Nov 2024 09:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:40.135382
- Title: Symbolic-AI-Fusion Deep Learning (SAIF-DL): Encoding Knowledge into Training with Answer Set Programming Loss Penalties by a Novel Loss Function Approach
- Title(参考訳): 記号型AIフュージョン深層学習(SAIF-DL):新しいロス関数アプローチによる解答集合プログラミング損失のトレーニングへの知識の符号化
- Authors: Fadi Al Machot, Martin Thomas Horsch, Habib Ullah,
- Abstract要約: ドメイン固有の制約、ルール、論理的推論を直接モデルの学習プロセスにエンコードします。
提案手法はフレキシブルであり、回帰タスクと分類タスクの両方に適用可能である。
この設計により、ASPルールを単に更新することで、損失関数の自動化が可能になる。
- 参考スコア(独自算出の注目度): 0.7420433640907689
- License:
- Abstract: This paper presents a hybrid methodology that enhances the training process of deep learning (DL) models by embedding domain expert knowledge using ontologies and answer set programming (ASP). By integrating these symbolic AI methods, we encode domain-specific constraints, rules, and logical reasoning directly into the model's learning process, thereby improving both performance and trustworthiness. The proposed approach is flexible and applicable to both regression and classification tasks, demonstrating generalizability across various fields such as healthcare, autonomous systems, engineering, and battery manufacturing applications. Unlike other state-of-the-art methods, the strength of our approach lies in its scalability across different domains. The design allows for the automation of the loss function by simply updating the ASP rules, making the system highly scalable and user-friendly. This facilitates seamless adaptation to new domains without significant redesign, offering a practical solution for integrating expert knowledge into DL models in industrial settings such as battery manufacturing.
- Abstract(参考訳): 本稿では,ドメインエキスパートの知識をオントロジーと解集合プログラミング(ASP.NET)を用いて埋め込むことにより,ディープラーニング(DL)モデルの学習プロセスを強化するハイブリッド手法を提案する。
これらのシンボリックAIメソッドを統合することで、ドメイン固有の制約、ルール、論理的推論を直接モデルの学習プロセスにエンコードし、パフォーマンスと信頼性の両方を改善します。
提案手法は,レグレッションタスクと分類タスクの両方に適用可能であり,医療,自律システム,エンジニアリング,電池製造アプリケーションなど,さまざまな分野における一般化可能性を示す。
他の最先端の方法とは異なり、我々のアプローチの強みは異なるドメインにわたるスケーラビリティにある。
この設計により、ASPルールを単に更新するだけで、損失関数の自動化が可能になり、システムは高度にスケーラブルでユーザフレンドリになる。
これにより、大きな再設計をすることなく、新しいドメインへのシームレスな適応を可能にし、バッテリー製造のような産業環境で、専門知識をDLモデルに統合するための実用的なソリューションを提供する。
関連論文リスト
- Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI [0.0]
AMDTLは、ドメインのミスアライメント、負の転送、破滅的な忘れなど、トランスファーラーニングの主な課題に対処することを目的としている。
このフレームワークは、タスクの多様な分散に訓練されたメタラーナー、ドメインの特徴分布を整合させる敵のトレーニング技術、動的特徴制御機構を統合している。
ベンチマークデータセットによる実験結果から,AMDTLは既存の移動学習手法よりも精度,適応効率,堅牢性に優れていた。
論文 参考訳(メタデータ) (2024-09-10T18:11:48Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning [4.854297874710511]
制約付き学習と知識蒸留技術は有望な結果を示した。
本稿では,機械学習モデルに知識を付加した論理的制約を組み込むロスベース手法を提案する。
本手法は,論理的制約のある分類タスクを含む,様々な学習課題において評価する。
論文 参考訳(メタデータ) (2024-05-03T19:21:47Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Promoting Generalization for Exact Solvers via Adversarial Instance
Augmentation [62.738582127114704]
Adarは、模倣学習ベース(ILベース)と強化学習ベース(RLベース)の両方の一般化を理解し、改善するためのフレームワークである。
論文 参考訳(メタデータ) (2023-10-22T03:15:36Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Learning Off-Policy with Online Planning [18.63424441772675]
本研究では,学習モデルと端末値関数を用いたHステップルックアヘッドの新たなインスタンス化について検討する。
ナビゲーション環境の集合に配置する際の安全性制約を組み込むLOOPの柔軟性を示す。
論文 参考訳(メタデータ) (2020-08-23T16:18:44Z) - Delta Schema Network in Model-based Reinforcement Learning [125.99533416395765]
この研究は、伝達学習の非効率性である人工知能の未解決問題に焦点が当てられている。
環境データからオブジェクトとアクション間の論理的関係を抽出できるスキーマネットワーク手法を拡張している。
本稿では,デルタネットワーク(DSN)をトレーニングし,環境の将来状態を予測し,前向きな報酬をもたらす計画行動を示すアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T15:58:25Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。