論文の概要: Crystal Structure Generation Based On Material Properties
- arxiv url: http://arxiv.org/abs/2411.08464v1
- Date: Wed, 13 Nov 2024 09:36:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:39.655839
- Title: Crystal Structure Generation Based On Material Properties
- Title(参考訳): 材料特性に基づく結晶構造生成
- Authors: Chao Huang, JiaHui Chen, HongRui Liang, ChunYan Chen, Chen Chen,
- Abstract要約: 期待される材料特性から結晶構造を生成する結晶DiTモデルを提案する。
実験により,提案手法は良好な性能を示した。
- 参考スコア(独自算出の注目度): 7.28655553959202
- License:
- Abstract: The discovery of new materials is very important to the field of materials science. When researchers explore new materials, they often have expected performance requirements for their crystal structure. In recent years, data-driven methods have made great progress in the direction plane of crystal structure generation, but there is still a lack of methods that can effectively map material properties to crystal structure. In this paper, we propose a Crystal DiT model to generate the crystal structure from the expected material properties by embedding the material properties and combining the symmetry information predicted by the large language model. Experimental verification shows that our proposed method has good performance.
- Abstract(参考訳): 新しい素材の発見は、材料科学の分野において非常に重要である。
研究者は新しい材料を探索する際、しばしば結晶構造の性能要件を期待している。
近年、データ駆動法は結晶構造生成の方向面において大きな進歩を遂げているが、材料特性を結晶構造に効果的にマッピングする手法はいまだに存在しない。
本稿では, 材料特性を埋め込んで, 大規模言語モデルで予測される対称性情報を組み合わせることで, 期待される材料特性から結晶構造を生成する結晶DiTモデルを提案する。
実験により,提案手法は良好な性能を示した。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
結晶構造の制御可能な生成のための生成階層材料探索(GenMS)を提案する。
GenMSは(1)高レベル自然言語を入力とし、結晶に関する中間テキスト情報を生成する言語モデルからなる。
GenMSはまた、生成された結晶構造から特性(たとえば生成エネルギー)を予測するためにグラフニューラルネットワークを使用する。
論文 参考訳(メタデータ) (2024-09-10T17:51:28Z) - Space Group Informed Transformer for Crystalline Materials Generation [2.405914457225118]
本稿では, 変圧器を用いた自己回帰モデルであるCrystalFormerを紹介した。
空間群対称性の組み入れは結晶空間を著しく単純化し、結晶材料のデータおよび効率的な生成モデリングの計算に不可欠である。
論文 参考訳(メタデータ) (2024-03-23T06:01:45Z) - Generative Design of Crystal Structures by Point Cloud Representations and Diffusion Model [9.011625935805927]
本稿では, 点雲表現を利用して構造情報を符号化し, 合成可能な材料を生成するための枠組みを提案する。
我々の研究は、材料設計と合成の進歩への重要な貢献である。
論文 参考訳(メタデータ) (2024-01-24T02:36:52Z) - Stoichiometry Representation Learning with Polymorphic Crystal
Structures [54.65985356122883]
確率論記述子は、構造的な情報を持たない特定の化合物を形成するために関係する要素間の比を明らかにすることができる。
本稿では,手軽に利用できる構造情報を利用して,確率論の確率的表現を学習するPolySRLを提案する。
論文 参考訳(メタデータ) (2023-11-17T20:34:28Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Equivariant Parameter Sharing for Porous Crystalline Materials [4.271235935891555]
既存の結晶特性予測法は、制限的すぎる制約を持つか、単位細胞間で対称性を組み込むのみである。
我々は、結晶の単位セルの対称性をアーキテクチャに組み込んだモデルを開発し、多孔質構造を明示的にモデル化する。
提案手法は, 既存の結晶特性予測法よりも優れた性能を示し, 対称性の包含によりより効率的なモデルが得られることを確認した。
論文 参考訳(メタデータ) (2023-04-04T08:33:13Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。