論文の概要: Comparative study of random walks with one-step memory on complex networks
- arxiv url: http://arxiv.org/abs/2411.08608v1
- Date: Wed, 13 Nov 2024 13:49:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:38.141366
- Title: Comparative study of random walks with one-step memory on complex networks
- Title(参考訳): 複雑ネットワークにおけるランダムウォークとワンステップメモリの比較研究
- Authors: Miroslav Mirchev, Lasko Basnarkov, Igor Mishkovski,
- Abstract要約: 本研究では,ローカル情報とワンステップメモリに依存する複雑なネットワーク上でのランダムウォークの探索効率について検討する。
生成された実ネットワークを用いた実験では、逆次数、永続性、局所的な2つのホップパスに基づくバイアスがより少ない探索時間に繋がることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We investigate searching efficiency of different kinds of random walk on complex networks which rely on local information and one-step memory. For the studied navigation strategies we obtained theoretical and numerical values for the graph mean first passage times as an indicator for the searching efficiency. The experiments with generated and real networks show that biasing based on inverse degree, persistence and local two-hop paths can lead to smaller searching times. Moreover, these biasing approaches can be combined to achieve a more robust random search strategy. Our findings can be applied in the modeling and solution of various real-world problems.
- Abstract(参考訳): 本研究では,ローカル情報とワンステップメモリに依存する複雑なネットワーク上でのランダムウォークの探索効率について検討する。
本研究では,探索効率の指標として,グラフの平均通過時間の理論的,数値的な値を得た。
生成された実ネットワークによる実験は、逆次数、永続性、局所的な2つのホップパスに基づくバイアスがより少ない探索時間をもたらすことを示した。
さらに、これらのバイアス手法を組み合わせることで、より堅牢なランダム検索戦略を実現することができる。
本研究は実世界の諸問題のモデル化と解法に応用できる。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - Reinforcement Learning Discovers Efficient Decentralized Graph Path Search Strategies [4.77487125476894]
グラフパス探索は、強化学習で最近アプローチされた古典的なコンピュータサイエンス問題である。
グラフパス探索のためのマルチエージェント手法を提案し, 相同性と構造的不均一性の両方をうまく活用する。
この結果から,グラフナビゲーションのための意味のある埋め込みを報酬駆動学習を用いて構築できることが示唆された。
論文 参考訳(メタデータ) (2024-09-12T10:56:38Z) - CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network
for Sampling-Based Path Planning [0.0]
本稿では,畳み込みブロック注意生成ネットワークを用いた新しい画像ベース学習アルゴリズム(CBAGAN-RRT)を提案する。
GANモデルから生成された経路の確率分布を用いて,RRTアルゴリズムのサンプリングプロセスを導出する。
我々は、citezhang 2021によって生成されたデータセット上で、我々のネットワークをトレーニングし、テストし、我々のアルゴリズムが過去の最先端アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-13T20:06:53Z) - Continuous Time Analysis of Dynamic Matching in Heterogeneous Networks [0.0]
常微分方程式(ODE)モデルを確立することによって動的マッチングをモデル化する新しい手法を提案する。
ヘテロジニアスネットワークにおいて,整合性のあるハード・ト・マッチ・エージェントのマッチングを容易・ト・マッチ・エージェントよりも優先する2つのアルゴリズムについて検討した。
この結果から,エージェントの相反する目標間のトレードオフを迅速かつ最適に示し,実世界の動的マッチングシステムの設計に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-02-20T04:45:13Z) - Causal Balancing for Domain Generalization [95.97046583437145]
そこで本研究では,観察されたトレーニング分布の領域特異的なスプリアス相関を低減するために,バランスの取れたミニバッチサンプリング戦略を提案する。
本研究では, 突発性源の同定可能性を保証するとともに, バランスの取れた, 突発性のない分布から, 提案手法が有効にサンプリング可能であることを示す。
論文 参考訳(メタデータ) (2022-06-10T17:59:11Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
本研究では,DARTSに基づくNAS探索過程を正規化するために,ベータデカイと呼ばれるシンプルだが効率的な正規化手法を提案する。
NAS-Bench-201の実験結果から,提案手法は探索過程の安定化に有効であり,探索されたネットワークを異なるデータセット間で転送しやすくする。
論文 参考訳(メタデータ) (2022-03-03T11:47:14Z) - Community detection using low-dimensional network embedding algorithms [1.052782170493037]
我々はDeepWalkとnode2vecという2つの主要なアルゴリズムが、標準ネットワークモデルのためのコミュニティを回復する際の性能を厳格に理解している。
固定された共起窓を考えると、非追跡確率の低いランダムウォークを用いた node2vec は、多くのスペーサーネットワークで成功することを示す。
論文 参考訳(メタデータ) (2021-11-04T14:57:43Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Theory-Inspired Path-Regularized Differential Network Architecture
Search [206.93821077400733]
差分アーキテクチャサーチ(DARTS)における高速ネットワーク最適化に対するスキップ接続の影響と,他のタイプの操作に対する競争上の優位性について検討する。
i)操作間の不当競争を避けるために各操作に導入された差分群構造スパース二乗ゲートと,(ii)浅部より収束する深部アーキテクチャの探索を誘導するために用いられる経路深度正規化の2つの主要なモジュールからなる理論に着想を得た経路規則化DARTSを提案する。
論文 参考訳(メタデータ) (2020-06-30T05:28:23Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z) - Multi-layer local optima networks for the analysis of advanced local
search-based algorithms [0.6299766708197881]
ローカルオプティマスネットワーク(Local Optima Network, LON)は、特定の近傍演算子と局所探索アルゴリズムに基づいて、特定の最適化問題のフィットネスランドスケープを圧縮するグラフモデルである。
本稿では、多層LONの概念と、フィットネスランドスケープ分析のためのメトリクス抽出を目的としたこれらのモデルを探索するための方法論を提案する。
論文 参考訳(メタデータ) (2020-04-29T03:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。