MikuDance: Animating Character Art with Mixed Motion Dynamics
- URL: http://arxiv.org/abs/2411.08656v2
- Date: Thu, 14 Nov 2024 14:11:06 GMT
- Title: MikuDance: Animating Character Art with Mixed Motion Dynamics
- Authors: Jiaxu Zhang, Xianfang Zeng, Xin Chen, Wei Zuo, Gang Yu, Zhigang Tu,
- Abstract summary: We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate character art.
Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling.
A Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation.
- Score: 28.189884806755153
- License:
- Abstract: We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate stylized character art. MikuDance consists of two key techniques: Mixed Motion Modeling and Mixed-Control Diffusion, to address the challenges of high-dynamic motion and reference-guidance misalignment in character art animation. Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling. Building on this, the Mixed-Control Diffusion implicitly aligns the scale and body shape of diverse characters with motion guidance, allowing flexible control of local character motion. Subsequently, a Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation. Through extensive experiments, we demonstrate the effectiveness and generalizability of MikuDance across various character art and motion guidance, consistently producing high-quality animations with remarkable motion dynamics.
Related papers
- X-Dyna: Expressive Dynamic Human Image Animation [49.896933584815926]
X-Dyna is a zero-shot, diffusion-based pipeline for animating a single human image.
It generates realistic, context-aware dynamics for both the subject and the surrounding environment.
arXiv Detail & Related papers (2025-01-17T08:10:53Z) - Move-in-2D: 2D-Conditioned Human Motion Generation [54.067588636155115]
We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image.
Our approach accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene.
arXiv Detail & Related papers (2024-12-17T18:58:07Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - Animate-X: Universal Character Image Animation with Enhanced Motion Representation [42.73097432203482]
Animate-X is a universal animation framework based on LDM for various character types, including anthropomorphic characters.
We introduce the Pose Indicator, which captures comprehensive motion pattern from the driving video through both implicit and explicit manner.
We also introduce a new Animated Anthropomorphic Benchmark to evaluate the performance of Animate-X on universal and widely applicable animation images.
arXiv Detail & Related papers (2024-10-14T09:06:55Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - TapMo: Shape-aware Motion Generation of Skeleton-free Characters [64.83230289993145]
We present TapMo, a Text-driven Animation Pipeline for Motion in a broad spectrum of skeleton-free 3D characters.
TapMo comprises two main components - Mesh Handle Predictor and Shape-aware Diffusion Module.
arXiv Detail & Related papers (2023-10-19T12:14:32Z) - Motion Puzzle: Arbitrary Motion Style Transfer by Body Part [6.206196935093063]
Motion Puzzle is a novel motion style transfer network that advances the state-of-the-art in several important respects.
Our framework extracts style features from multiple style motions for different body parts and transfers them locally to the target body parts.
It can capture styles exhibited by dynamic movements, such as flapping and staggering, significantly better than previous work.
arXiv Detail & Related papers (2022-02-10T19:56:46Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) learns to encode motion information.
MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
We demonstrate that MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
arXiv Detail & Related papers (2021-04-01T03:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.