TRACE: Transformer-based Risk Assessment for Clinical Evaluation
- URL: http://arxiv.org/abs/2411.08701v2
- Date: Thu, 22 May 2025 15:19:34 GMT
- Title: TRACE: Transformer-based Risk Assessment for Clinical Evaluation
- Authors: Dionysis Christopoulos, Sotiris Spanos, Valsamis Ntouskos, Konstantinos Karantzalos,
- Abstract summary: TRACE (Transformer-based Risk Assessment for Clinical Evaluation) is a novel method for clinical risk assessment based on clinical data.<n>Our approach is able to handle different data modalities, including continuous, categorical and multiple-choice (checkbox) attributes.<n>In terms of explainability, our Transformer-based method offers easily interpretable results via attention weights.
- Score: 2.2231319591004435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present TRACE (Transformer-based Risk Assessment for Clinical Evaluation), a novel method for clinical risk assessment based on clinical data, leveraging the self-attention mechanism for enhanced feature interaction and result interpretation. Our approach is able to handle different data modalities, including continuous, categorical and multiple-choice (checkbox) attributes. The proposed architecture features a shared representation of the clinical data obtained by integrating specialized embeddings of each data modality, enabling the detection of high-risk individuals using Transformer encoder layers. To assess the effectiveness of the proposed method, a strong baseline based on non-negative multi-layer perceptrons (MLPs) is introduced. The proposed method outperforms various baselines widely used in the domain of clinical risk assessment, while effectively handling missing values. In terms of explainability, our Transformer-based method offers easily interpretable results via attention weights, further enhancing the clinicians' decision-making process.
Related papers
- Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence [0.0]
We present a novel method for unsupervised machine learning that directly optimize for survival heterogeneity across patient clusters.<n>Our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups.<n>This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification.
arXiv Detail & Related papers (2025-06-15T19:11:10Z) - GEMA-Score: Granular Explainable Multi-Agent Scoring Framework for Radiology Report Evaluation [7.838068874909676]
Granular Explainable Multi-Agent Score (GEMA-Score) conducts both objective and subjective evaluation through a large language model-based multi-agent workflow.<n>GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset.
arXiv Detail & Related papers (2025-03-07T11:42:22Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
We provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality.
To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes.
We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT.
arXiv Detail & Related papers (2022-08-09T03:49:52Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA)
The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL.
Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
arXiv Detail & Related papers (2021-11-15T12:38:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z) - An Efficient Framework for Automated Screening of Clinically Significant
Macular Edema [0.41998444721319206]
The present study proposes a new approach to automated screening of Clinically Significant Macular Edema (CSME)
The proposed approach combines a pre-trained deep neural network with meta-heuristic feature selection.
A feature space over-sampling technique is being used to overcome the effects of skewed datasets.
arXiv Detail & Related papers (2020-01-20T07:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.