Masked Image Modeling Boosting Semi-Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2411.08756v2
- Date: Thu, 14 Nov 2024 08:36:22 GMT
- Title: Masked Image Modeling Boosting Semi-Supervised Semantic Segmentation
- Authors: Yangyang Li, Xuanting Hao, Ronghua Shang, Licheng Jiao,
- Abstract summary: We introduce a novel class-wise masked image modeling that independently reconstructs different image regions according to their respective classes.
We develop a feature aggregation strategy that minimizes the distances between features corresponding to the masked and visible parts within the same class.
In semantic space, we explore the application of masked image modeling to enhance regularization.
- Score: 38.55611683982936
- License:
- Abstract: In view of the fact that semi- and self-supervised learning share a fundamental principle, effectively modeling knowledge from unlabeled data, various semi-supervised semantic segmentation methods have integrated representative self-supervised learning paradigms for further regularization. However, the potential of the state-of-the-art generative self-supervised paradigm, masked image modeling, has been scarcely studied. This paradigm learns the knowledge through establishing connections between the masked and visible parts of masked image, during the pixel reconstruction process. By inheriting and extending this insight, we successfully leverage masked image modeling to boost semi-supervised semantic segmentation. Specifically, we introduce a novel class-wise masked image modeling that independently reconstructs different image regions according to their respective classes. In this way, the mask-induced connections are established within each class, mitigating the semantic confusion that arises from plainly reconstructing images in basic masked image modeling. To strengthen these intra-class connections, we further develop a feature aggregation strategy that minimizes the distances between features corresponding to the masked and visible parts within the same class. Additionally, in semantic space, we explore the application of masked image modeling to enhance regularization. Extensive experiments conducted on well-known benchmarks demonstrate that our approach achieves state-of-the-art performance. The code will be available at https://github.com/haoxt/S4MIM.
Related papers
- OneRef: Unified One-tower Expression Grounding and Segmentation with Mask Referring Modeling [80.85164509232261]
We propose OneRef, a minimalist referring framework built on the modality-shared one-tower transformer.
To modeling the referential relationship, we introduce a novel MVLM paradigm called Mask Referring Modeling (MRefM)
Within MRefM, we propose a referring-aware dynamic image masking strategy that is aware of the referred region.
arXiv Detail & Related papers (2024-10-10T15:18:19Z) - CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding [38.53988682814626]
We propose a context-enhanced masked image modeling method (CtxMIM) for remote sensing image understanding.
CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches.
With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset.
arXiv Detail & Related papers (2023-09-28T18:04:43Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Understanding Self-Supervised Pretraining with Part-Aware Representation
Learning [88.45460880824376]
We study the capability that self-supervised representation pretraining methods learn part-aware representations.
Results show that the fully-supervised model outperforms self-supervised models for object-level recognition.
arXiv Detail & Related papers (2023-01-27T18:58:42Z) - Stare at What You See: Masked Image Modeling without Reconstruction [154.74533119863864]
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training.
Recent approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance.
We argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.
arXiv Detail & Related papers (2022-11-16T12:48:52Z) - SemMAE: Semantic-Guided Masking for Learning Masked Autoencoders [24.73294590182861]
Masked autoencoding (MAE) is different between vision and language.
Unlike words in NLP, the lack of semantic decomposition of images still makes MAE different between vision and language.
We propose a Semantic-Guided Masking strategy to integrate semantic information into the training process of MAE.
arXiv Detail & Related papers (2022-06-21T09:08:32Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
Masked image model (MIM) framework for self-supervised learning, ADIOS, is proposed.
It simultaneously learns a masking function and an image encoder using an adversarial objective.
It consistently improves on state-of-the-art self-supervised learning (SSL) methods on a variety of tasks and datasets.
arXiv Detail & Related papers (2022-01-31T10:23:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.