論文の概要: Flow reconstruction in time-varying geometries using graph neural networks
- arxiv url: http://arxiv.org/abs/2411.08764v1
- Date: Wed, 13 Nov 2024 16:49:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:45.639680
- Title: Flow reconstruction in time-varying geometries using graph neural networks
- Title(参考訳): グラフニューラルネットワークを用いた時変測地における流れの再構成
- Authors: Bogdan A. Danciu, Vito A. Pagone, Benjamin Böhm, Marius Schmidt, Christos E. Frouzakis,
- Abstract要約: このモデルは、非常にスパースな入力を処理するための前処理ステップとして、特徴伝搬アルゴリズムを組み込んでいる。
バリデーションマスクとしてバイナリインジケータを導入し、元のデータポイントと伝播データポイントを区別する。
このモデルは、技術的に関係のある運転条件下で、エンジンの直接数値シミュレーション(DNS)のユニークなデータセットに基づいて訓練される。
- 参考スコア(独自算出の注目度): 1.0485739694839669
- License:
- Abstract: The paper presents a Graph Attention Convolutional Network (GACN) for flow reconstruction from very sparse data in time-varying geometries. The model incorporates a feature propagation algorithm as a preprocessing step to handle extremely sparse inputs, leveraging information from neighboring nodes to initialize missing features. In addition, a binary indicator is introduced as a validity mask to distinguish between the original and propagated data points, enabling more effective learning from sparse inputs. Trained on a unique data set of Direct Numerical Simulations (DNS) of a motored engine at a technically relevant operating condition, the GACN shows robust performance across different resolutions and domain sizes and can effectively handle unstructured data and variable input sizes. The model is tested on previously unseen DNS data as well as on an experimental data set from Particle Image Velocimetry (PIV) measurements that were not considered during training. A comparative analysis shows that the GACN consistently outperforms both a conventional Convolutional Neural Network (CNN) and cubic interpolation methods on the DNS and PIV test sets by achieving lower reconstruction errors and better capturing fine-scale turbulent structures. In particular, the GACN effectively reconstructs flow fields from domains up to 14 times larger than those observed during training, with the performance advantage increasing for larger domains.
- Abstract(参考訳): 本稿では, 時間変化の少ないデータから流れの再構成を行うためのグラフ注意畳み込みネットワーク(GACN)を提案する。
このモデルは、非常にスパースな入力を処理するための前処理ステップとして機能伝搬アルゴリズムを組み込んでおり、近隣のノードからの情報を活用して、欠落した特徴を初期化する。
さらに、元のデータポイントと伝播したデータポイントを区別するための妥当性マスクとしてバイナリインジケータを導入し、スパース入力からより効果的な学習を可能にする。
GACNは、技術的に関係のある動作条件下で、モータ付きエンジンの直接数値シミュレーション(DNS)のユニークなデータセットに基づいて、異なる解像度とドメインサイズで堅牢な性能を示し、非構造化データと可変入力サイズを効果的に扱うことができる。
このモデルは、未確認のDNSデータと、トレーニング中に考慮されなかったPIV(Particle Image Velocimetry)測定から得られた実験データセットでテストされる。
比較分析により、GACNは、より低い再構成誤差を達成し、より微細な乱流構造を捉えることにより、従来の畳み込みニューラルネットワーク(CNN)とDNSおよびPIVテストセットの立方体補間手法の両方を一貫して上回っていることが示された。
特にGACNは、トレーニング中に観察されるものよりも最大14倍大きなドメインからのフローフィールドを効果的に再構築する。
関連論文リスト
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
本稿では,ネットワーク侵入検知システム(NIDS)のためのニューラルネットワークについて述べる。
ディープパケットインスペクションに頼らず、ほとんどのNIDSデータセットで見つからず、従来のフローコレクタから簡単に取得できる11の機能しか必要としない。
報告されたトレーニング精度は、提案手法の99%を超え、ニューラルネットワークの入力特性は20に満たない。
論文 参考訳(メタデータ) (2024-10-24T11:36:19Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
本稿では,非構造化メッシュ上でのCFD結果の渦を特定するために,U-Netアーキテクチャを用いたグラフニューラルネットワーク(GNN)に基づくモデルを提案する。
2次元CFDメッシュにおける渦領域をラベル付けするための渦自動ラベル法を提案する。
論文 参考訳(メタデータ) (2023-11-11T12:10:16Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Estimating Traffic Speeds using Probe Data: A Deep Neural Network
Approach [1.5469452301122177]
本稿では,sparseデータに基づく高速道路の時空トラヒック速度を再現する,専用ディープニューラルネットワークアーキテクチャを提案する。
2ヶ月の間にドイツ高速道路A9で収集された大規模な浮動小数点データ(FCD)を利用する。
以上の結果から,DNNは学習パターンを適用でき,静止渋滞だけでなく移動パターンを高精度に再構築できることがわかった。
論文 参考訳(メタデータ) (2021-04-19T23:32:12Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。