Process-aware Human Activity Recognition
- URL: http://arxiv.org/abs/2411.08814v1
- Date: Wed, 13 Nov 2024 17:53:23 GMT
- Title: Process-aware Human Activity Recognition
- Authors: Jiawei Zheng, Petros Papapanagiotou, Jacques D. Fleuriot, Jane Hillston,
- Abstract summary: We propose a novel approach that incorporates process information from context to enhance the HAR performance.
Specifically, we align probabilistic events generated by machine learning models with process models derived from contextual information.
This alignment adaptively weighs these two sources of information to optimise HAR accuracy.
- Score: 1.912429179274357
- License:
- Abstract: Humans naturally follow distinct patterns when conducting their daily activities, which are driven by established practices and processes, such as production workflows, social norms and daily routines. Human activity recognition (HAR) algorithms usually use neural networks or machine learning techniques to analyse inherent relationships within the data. However, these approaches often overlook the contextual information in which the data are generated, potentially limiting their effectiveness. We propose a novel approach that incorporates process information from context to enhance the HAR performance. Specifically, we align probabilistic events generated by machine learning models with process models derived from contextual information. This alignment adaptively weighs these two sources of information to optimise HAR accuracy. Our experiments demonstrate that our approach achieves better accuracy and Macro F1-score compared to baseline models.
Related papers
- Interpretable Data Fusion for Distributed Learning: A Representative Approach via Gradient Matching [19.193379036629167]
This paper introduces a representative-based approach for distributed learning that transforms multiple raw data points into a virtual representation.
It achieves this by condensing extensive datasets into digestible formats, thus fostering intuitive human-machine interactions.
arXiv Detail & Related papers (2024-05-06T18:21:41Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - randomHAR: Improving Ensemble Deep Learners for Human Activity
Recognition with Sensor Selection and Reinforcement Learning [4.5830802802139585]
The general idea behind randomHAR is training a series of deep learning models with the same architecture on randomly selected sensor data.
In contrast to existing work, this approach optimize the ensemble process rather than the architecture of the constituent models.
The experiment demonstrates that the proposed approach outperforms the state-of-the-art method, ensembleLSTM.
arXiv Detail & Related papers (2023-07-15T10:51:03Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
We show that passive data can still be used to learn features that accelerate downstream RL.
Our approach learns from passive data by modeling intentions.
Our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
arXiv Detail & Related papers (2023-04-10T17:59:05Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
We consider human activity recognition (HAR) from wearable sensor data in manual-work processes.
We show how context information can be integrated systematically into a deep neural network-based HAR system.
We empirically show that our proposed architecture increases HAR performance, compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T06:08:25Z) - B-HAR: an open-source baseline framework for in depth study of human
activity recognition datasets and workflows [1.7639472693362923]
This paper proposes an open-source framework, named B-HAR, for the definition, standardization, and development of a baseline framework.
It implements the most popular data processing methods for data preparation and the most commonly used machine and deep learning pattern recognition models.
arXiv Detail & Related papers (2021-01-23T12:42:41Z) - Probabilistic Active Meta-Learning [15.432006404678981]
We introduce task selection based on prior experience into a meta-learning algorithm.
We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
arXiv Detail & Related papers (2020-07-17T12:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.