Can Large-Language Models Help us Better Understand and Teach the Development of Energy-Efficient Software?
- URL: http://arxiv.org/abs/2411.08912v1
- Date: Wed, 30 Oct 2024 01:09:32 GMT
- Title: Can Large-Language Models Help us Better Understand and Teach the Development of Energy-Efficient Software?
- Authors: Ryan Hasler, Konstantin Läufer, George K. Thiruvathukal, Huiyun Peng, Kyle Robinson, Kirsten Davis, Yung-Hsiang Lu, James C. Davis,
- Abstract summary: Energy-efficient software engineering techniques are often absent from undergraduate curricula.
We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class.
- Score: 2.8812501020074968
- License:
- Abstract: Computing systems are consuming an increasing and unsustainable fraction of society's energy footprint, notably in data centers. Meanwhile, energy-efficient software engineering techniques are often absent from undergraduate curricula. We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class. There is one major problem with such an endeavor: undergraduate curricula have limited space for mastering energy-related systems programming aspects. To address this problem, we propose to leverage the domain expertise afforded by large language models (LLMs). In our preliminary studies, we observe that LLMs can generate energy-efficient variations of basic linear algebra codes tailored to both ARM64 and AMD64 architectures, as well as unit tests and energy measurement harnesses. On toy examples suitable for classroom use, this approach reduces energy expenditure by 30-90%. These initial experiences give rise to our vision of LLM-based meta-compilers as a tool for students to transform high-level algorithms into efficient, hardware-specific implementations. Complementing this tooling, we will incorporate systems thinking concepts into the learning module so that students can reason both locally and globally about the effects of energy optimizations.
Related papers
- Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions [2.848398051763324]
We propose a novel application of large language models (LLMs) as codes for energy efficiency.
We describe and evaluate a prototype, finding that over 6 small programs our system can improve energy efficiency in 3 of them, up to 2x better than compiler optimizations alone.
arXiv Detail & Related papers (2024-10-11T20:35:40Z) - Solving Boltzmann Optimization Problems with Deep Learning [0.21485350418225244]
The Ising model shows particular promise as a future framework for highly energy efficient computation.
Ising systems are able to operate at energies approaching thermodynamic limits for energy consumption of computation.
The challenge in creating Ising-based hardware is in optimizing useful circuits that produce correct results on fundamentally nondeterministic hardware.
arXiv Detail & Related papers (2024-01-30T19:52:02Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - From Words to Watts: Benchmarking the Energy Costs of Large Language
Model Inference [19.439683873290623]
Large language models (LLMs) have exploded in popularity due to their new generative capabilities that go far beyond prior state-of-the-art.
These models carry significant computational challenges, especially the compute and energy costs required for inference.
arXiv Detail & Related papers (2023-10-04T17:41:59Z) - Trends in Energy Estimates for Computing in AI/Machine Learning
Accelerators, Supercomputers, and Compute-Intensive Applications [3.2634122554914]
We examine the computational energy requirements of different systems driven by the geometrical scaling law.
We show that energy efficiency due to geometrical scaling is slowing down.
At the application level, general-purpose AI-ML methods can be computationally energy intensive.
arXiv Detail & Related papers (2022-10-12T16:14:33Z) - OMLT: Optimization & Machine Learning Toolkit [54.58348769621782]
The optimization and machine learning toolkit (OMLT) is an open-source software package incorporating neural network and gradient-boosted tree surrogate models.
We discuss the advances in optimization technology that made OMLT possible and show how OMLT seamlessly integrates with the algebraic modeling language Pyomo.
arXiv Detail & Related papers (2022-02-04T22:23:45Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Learnergy: Energy-based Machine Learners [0.0]
Machine learning techniques have been broadly encouraged in the context of deep learning architectures.
An exciting algorithm denoted as Restricted Boltzmann Machine relies on energy- and probabilistic-based nature to tackle the most diverse applications, such as classification, reconstruction, and generation of images and signals.
arXiv Detail & Related papers (2020-03-16T21:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.