Energy Considerations of Large Language Model Inference and Efficiency Optimizations
- URL: http://arxiv.org/abs/2504.17674v1
- Date: Thu, 24 Apr 2025 15:45:05 GMT
- Title: Energy Considerations of Large Language Model Inference and Efficiency Optimizations
- Authors: Jared Fernandez, Clara Na, Vashisth Tiwari, Yonatan Bisk, Sasha Luccioni, Emma Strubell,
- Abstract summary: As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise.<n>We systematically analyze the energy implications of common inference efficiency optimizations across diverse NLP and AI workloads.<n>Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines.
- Score: 28.55549828393871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
Related papers
- Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
We conduct a comprehensive analysis of 28 quantized Large Language Models (LLMs) from the Ollama library.<n>We evaluate energy efficiency, inference performance, and output accuracy across multiple quantization levels and task types.<n>Our findings reveal the trade-offs between energy efficiency, inference speed, and accuracy in different quantization settings.
arXiv Detail & Related papers (2025-04-04T11:29:30Z) - Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings [1.5749416770494706]
Large language models (LLMs) have shown significant improvements in many natural language processing (NLP) tasks.<n>LLMs are resource-intensive, requiring extensive computational resources both during training and inference.<n>As their adoption accelerates, the sustainability of LLMs has become a critical issue.
arXiv Detail & Related papers (2025-01-14T16:02:33Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments [1.0558515062670693]
Large language models (LLMs) in real-world scenarios remains a critical challenge.<n>These challenges often lead to inefficiencies in memory utilization, latency, and throughput.<n>We develop a framework to address these issues, achieving prediction errors between 9.9% and 42.3% for key metrics such as batch latency, TTFT, and decode throughput.
arXiv Detail & Related papers (2024-12-06T05:46:43Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Hardware Acceleration of LLMs: A comprehensive survey and comparison [0.0]
Large Language Models (LLMs) have emerged as powerful tools for natural language processing tasks, revolutionizing the field with their ability to understand and generate human-like text.
We present a comprehensive survey of the several research efforts that have been presented for the acceleration of transformer networks for Large Language Models using hardware accelerators.
arXiv Detail & Related papers (2024-09-05T09:43:25Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
This paper introduces MELODI, a framework crafted to monitor and analyze the energy consumed during large language models inference processes.
The dataset, generated using MELODI, encompasses a broad spectrum of LLM deployment frameworks, multiple language models, and extensive prompt datasets.
Our findings indicate substantial disparities in energy efficiency, suggesting ample scope for optimization and adoption of sustainable measures.
arXiv Detail & Related papers (2024-07-04T12:16:28Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlon is a benchmark for holistic and realistic evaluation of model efficiency.
Pentathlon focuses on inference, which accounts for a majority of the compute in a model's lifecycle.
It incorporates a suite of metrics that target different aspects of efficiency, including latency, throughput, memory overhead, and energy consumption.
arXiv Detail & Related papers (2023-07-19T01:05:33Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
Energy-based Models (EBM) represent expressive probability density distributions.
We present a set of required modeling and algorithmic choices to adapt EBMs into motion optimization.
arXiv Detail & Related papers (2022-04-11T19:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.