Retrieval of sun-induced plant fluorescence in the O$_2$-A absorption band from DESIS imagery
- URL: http://arxiv.org/abs/2411.08925v1
- Date: Tue, 12 Nov 2024 13:02:06 GMT
- Title: Retrieval of sun-induced plant fluorescence in the O$_2$-A absorption band from DESIS imagery
- Authors: Jim Buffat, Miguel Pato, Kevin Alonso, Stefan Auer, Emiliano Carmona, Stefan Maier, Rupert Müller, Patrick Rademske, Uwe Rascher, Hanno Scharr,
- Abstract summary: We provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation to high-quality airborne estimates of sun-induced fluorescence (SIF)
SIF estimates can provide explanatory information for many tasks related to agricultural management and physiological studies.
- Score: 1.3107669223114087
- License:
- Abstract: We provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation ($r^2=0.6$) to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF estimates can provide explanatory information for many tasks related to agricultural management and physiological studies. While SIF products from airborne platforms are accurate and spatially well resolved, the data acquisition of such products remains science-oriented and limited to temporally constrained campaigns. Spaceborne SIF products on the other hand are available globally with often sufficient revisit times. However, the spatial resolution of spaceborne SIF products is too small for agricultural applications. In view of ESA's upcoming FLEX mission we develop a method for SIF retrieval in the O$_2$-A band of hyperspectral DESIS imagery to provide first insights for spaceborne SIF retrieval at high spatial resolution. To this end, we train a simulation-based self-supervised network with a novel perturbation based regularizer and test performance improvements under additional supervised regularization of atmospheric variable prediction. In a validation study with corresponding HyPlant derived SIF estimates at 740 nm we find that our model reaches a mean absolute difference of 0.78 mW / nm / sr / m$^2$.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry [3.431158134976364]
This study investigated the use of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis for rapid soil fertility assessment.
A total of 1,133 soil samples from diverse agro-climatic zones in Eastern India were analyzed.
arXiv Detail & Related papers (2024-04-17T17:57:20Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Monitoring Vegetation From Space at Extremely Fine Resolutions via
Coarsely-Supervised Smooth U-Net [31.664846332628183]
Monitoring vegetation productivity at extremely fine resolutions is valuable for real-world agricultural applications.
We propose Coarsely-Supervised Smooth U-Net (CS-SUNet), a novel method for this coarse supervision setting.
Experiments show that CS-SUNet resolves fine-grained variations in SIF more accurately than existing methods.
arXiv Detail & Related papers (2022-07-16T21:36:22Z) - Crop Type Identification for Smallholding Farms: Analyzing Spatial,
Temporal and Spectral Resolutions in Satellite Imagery [2.624789041396596]
High spectral resolution in satellite imagery can improve prediction performance for low spatial and temporal resolutions.
The F1-score is increased by 7% when using multispectral data of MSTR images as compared to the best results obtained from HSTR images.
arXiv Detail & Related papers (2022-05-06T09:37:38Z) - Detection and Prediction of Nutrient Deficiency Stress using
Longitudinal Aerial Imagery [3.5417999811721677]
Early, precise detection of nutrient deficiency stress (NDS) has key economic as well as environmental impact precision.
We collect sequences of high-resolution aerial imagery and construct semantic segmentation models to detect and predict NDS across the field.
This work contributes to the recent developments in deep learning for remote sensing and agriculture, while addressing a key social challenge with implications for economics and sustainability.
arXiv Detail & Related papers (2020-12-17T15:06:15Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Fusing Optical and SAR time series for LAI gap filling with multioutput
Gaussian processes [6.0122901245834015]
Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions.
Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation.
We propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series.
arXiv Detail & Related papers (2020-12-05T10:36:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.