Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry
- URL: http://arxiv.org/abs/2404.12415v2
- Date: Thu, 5 Sep 2024 05:38:13 GMT
- Title: Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry
- Authors: Shubhadip Dasgupta, Satwik Pate, Divya Rathore, L. G. Divyanth, Ayan Das, Anshuman Nayak, Subhadip Dey, Asim Biswas, David C. Weindorf, Bin Li, Sergio Henrique Godinho Silva, Bruno Teixeira Ribeiro, Sanjay Srivastava, Somsubhra Chakraborty,
- Abstract summary: This study investigated the use of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis for rapid soil fertility assessment.
A total of 1,133 soil samples from diverse agro-climatic zones in Eastern India were analyzed.
- Score: 3.431158134976364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigated the use of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis for rapid soil fertility assessment, with a focus on key indicators such as available boron (B), organic carbon (OC), available manganese (Mn), available sulfur (S), and the sulfur availability index (SAI). A total of 1,133 soil samples from diverse agro-climatic zones in Eastern India were analyzed. The research integrated color and texture features from microscopic soil images, PXRF data, and auxiliary soil variables (AVs) using a Random Forest model. Results showed that combining image features (IFs) with AVs significantly improved prediction accuracy for available B (R2 = 0.80) and OC (R2 = 0.88). A data fusion approach, incorporating IFs, AVs, and PXRF data, further enhanced predictions for available Mn and SAI, with R2 values of 0.72 and 0.70, respectively. The study highlights the potential of integrating these technologies to offer rapid, cost-effective soil testing methods, paving the way for more advanced predictive models and a deeper understanding of soil fertility. Future work should explore the application of deep learning models on a larger dataset, incorporating soils from a wider range of agro-climatic zones under field conditions.
Related papers
- Enhancing Sentinel-2 Image Resolution: Evaluating Advanced Techniques based on Convolutional and Generative Neural Networks [44.99833362998488]
This paper investigates the enhancement of spatial resolution in Sentinel-2 bands that contain spectral information using advanced super-resolution techniques by a factor of 2.
State-of-the-art CNN models are compared with enhanced GAN approaches in terms of quality and feasibility.
GAN-based models not only provide clear and detailed images, but also demonstrate superior performance in terms of quantitative assessment.
arXiv Detail & Related papers (2024-10-01T08:56:46Z) - A Novel Fusion of Optical and Radar Satellite Data for Crop Phenology Estimation using Machine Learning and Cloud Computing [0.0]
In the era of big Earth observation data ubiquity, attempts have been made to accurately predict crop phenology based on Remote Sensing data.
Here, we estimate phenological developments for eight major crops and 13 phenological stages across Germany at 30m scale using a novel framework.
arXiv Detail & Related papers (2024-08-16T13:44:35Z) - A text-based, generative deep learning model for soil reflectance spectrum simulation in the VIS-NIR (400-2499 nm) bands [1.6114012813668932]
This paper presents a data-driven soil optics generative model (SOGM) for simulation of soil reflectance spectra based on soil property inputs.
The model is trained on an extensive dataset comprising nearly 180,000 soil spectra-property pairs from 17 datasets.
It can be easily integrated with soil-plant radiation model used for remote sensin research like PROSAIL.
arXiv Detail & Related papers (2024-05-02T07:34:12Z) - Rapid detection of soil carbonates by means of NIR spectroscopy, deep
learning methods and phase quantification by powder Xray diffraction [0.0]
We propose a rapid and efficient way to predict carbonates content in soil by means of FT NIR spectroscopy and by use of deep learning methods.
We exploited multiple machine learning methods, such as: 1) a Regressor and 2) a CNN and compare their performance with other traditional ML algorithms.
arXiv Detail & Related papers (2023-07-23T14:32:07Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Plant species richness prediction from DESIS hyperspectral data: A
comparison study on feature extraction procedures and regression models [1.8757823231879849]
This study provides a quantitative assessment on the ability of DESIS hyperspectral data for predicting plant species richness in two different habitat types in southeast Australia.
Relative importance analysis for the DESIS spectral bands showed that the red-edge, red, and blue spectral regions were more important for predicting plant species richness than the green bands and the near-infrared bands beyond red-edge.
arXiv Detail & Related papers (2023-01-05T05:33:56Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral
Imaging and LIBS [0.6875312133832077]
Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods.
We develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil.
arXiv Detail & Related papers (2021-07-06T02:37:30Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.