論文の概要: Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images
- arxiv url: http://arxiv.org/abs/2411.08936v1
- Date: Wed, 13 Nov 2024 11:25:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:22:42.113506
- Title: Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images
- Title(参考訳): 置換不変な全スライド画像分類のためのクラスタ型パッチ埋め込み
- Authors: Ravi Kant Gupta, Shounak Das, Amit Sethi,
- Abstract要約: Whole Slide Imaging (WSI)は、デジタル病理学の基礎であり、診断と研究に不可欠な詳細な洞察を提供する。
しかし、WSIのギガピクセルサイズは計算上の大きな課題を課し、実用性を制限している。
我々の新しいアプローチは、様々なエンコーダをインテリジェントなデータ還元に活用し、WSIの堅牢で置換不変な表現を保証するために異なる分類モデルを採用することで、これらの課題に対処する。
- 参考スコア(独自算出の注目度): 2.6733991338938026
- License:
- Abstract: Whole Slide Imaging (WSI) is a cornerstone of digital pathology, offering detailed insights critical for diagnosis and research. Yet, the gigapixel size of WSIs imposes significant computational challenges, limiting their practical utility. Our novel approach addresses these challenges by leveraging various encoders for intelligent data reduction and employing a different classification model to ensure robust, permutation-invariant representations of WSIs. A key innovation of our method is the ability to distill the complex information of an entire WSI into a single vector, effectively capturing the essential features needed for accurate analysis. This approach significantly enhances the computational efficiency of WSI analysis, enabling more accurate pathological assessments without the need for extensive computational resources. This breakthrough equips us with the capability to effectively address the challenges posed by large image resolutions in whole-slide imaging, paving the way for more scalable and effective utilization of WSIs in medical diagnostics and research, marking a significant advancement in the field.
- Abstract(参考訳): Whole Slide Imaging (WSI)は、デジタル病理学の基礎であり、診断と研究に不可欠な詳細な洞察を提供する。
しかし、WSIのギガピクセルサイズは計算上の大きな課題を課し、実用性を制限している。
我々の新しいアプローチは、様々なエンコーダをインテリジェントなデータ還元に活用し、WSIの堅牢で置換不変な表現を保証するために異なる分類モデルを採用することで、これらの課題に対処する。
我々の手法の重要な革新は、WSI全体の複雑な情報を単一のベクトルに蒸留し、正確な分析に必要な重要な特徴を効果的に捉えることである。
このアプローチは、WSI分析の計算効率を大幅に向上させ、広範な計算資源を必要とせずに、より正確な病理学的評価を可能にする。
このブレークスルーは、医用診断と研究におけるWSIのよりスケーラブルで効果的な活用の道を開いた、全スライディング画像における大きな画像解像度による課題に効果的に対処する能力を備えています。
関連論文リスト
- A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
デジタル病理学は、スライド画像全体(WSI)としての組織サンプルのデジタル化、保存、分析を可能にすることによって、病理学の分野に革命をもたらす
WSIは、組織サンプルの複雑な詳細をキャプチャするギガピクセルファイルであり、診断と研究目的のための豊富な情報ソースを提供する。
その巨大さのため、これらの画像を1つのコンパクトベクトルとして表現することは、多くの計算病理学的タスクに不可欠である。
論文 参考訳(メタデータ) (2024-09-06T20:56:25Z) - SPLICE -- Streamlining Digital Pathology Image Processing [0.7852714805965528]
画像分類・問合せのための教師なしパッチアルゴリズムSPLICE(Sequential Patching Lattice for Image Classification and Enquiry)を提案する。
SPLICEは、病理組織学的WSIをコンパクトな代表パッチセットに凝縮し、冗長性を最小化しながらWSIの"コラージュ"を形成する。
教師なしの方法として、SPLICEは組織像の保存要求を50%削減する。
論文 参考訳(メタデータ) (2024-04-26T21:30:36Z) - Adversary-Robust Graph-Based Learning of WSIs [2.9998889086656586]
全スライド画像(WSIs)は、ガラススライドに搭載された高解像度でデジタル化された組織サンプルで、高度な撮像装置を用いてスキャンされる。
WSIのディジタル分析は、ギガピクセルサイズとマルチレゾリューションストレージフォーマットのために、ユニークな課題を提示している。
我々は,WSI のグラフ表現から特徴を抽出するために GNN を利用した,斬新で革新的なグラフベースモデルを開発した。
論文 参考訳(メタデータ) (2024-03-21T15:37:37Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Diffusion-based generation of Histopathological Whole Slide Images at a
Gigapixel scale [10.481781668319886]
Synthetic Whole Slide Images (WSI)は、多くの計算アプリケーションの性能を高めるためにトレーニングデータセットを増強することができる。
既存のディープラーニングベースの手法は、WSIを通常高い解像度で生成しない。
本稿では,高分解能 WSI の画像生成に取り組むために,新しい粗大なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T14:33:39Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Evolutionary Computation in Action: Feature Selection for Deep Embedding
Spaces of Gigapixel Pathology Images [0.6037276428689636]
本稿では, 大規模多目的最適化(LSMOP)に基づくWSI表現の進化的アプローチを提案する。
The Cancer Genome Atlas(TC)画像を用いて,WSI表現,分類精度,特徴品質の観点から提案手法を検証した。
提案した進化的アルゴリズムは、最先端の手法によって提供されるコードよりも8%高い精度でWSIを表現するための非常にコンパクトな特徴ベクトルを求める。
論文 参考訳(メタデータ) (2023-03-02T03:36:15Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
プレゼンテーションアタックは、バイオメトリックなモダリティの大部分に大きな課題をもたらす。
本稿では,汎用的な深層学習に基づくプレゼンテーション攻撃検出ネットワークであるMVANetを提案する。
これはハイブリッドアルゴリズムの単純さと成功、あるいは複数の検出ネットワークの融合にインスパイアされている。
論文 参考訳(メタデータ) (2020-10-25T22:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。